小说 青春文学 中国散文 外国散文 悬疑推理 文学理论 文集 世界名著
外国小说| 中国当代小说| 中国古典小说| 中国近现代小说| 悬疑推理| 科幻小说 世界名著 四大名著| 作品集| 更多
外国诗歌| 中国古诗词| 中国现当代诗歌| 外国散文| 中国现当代散文| 中国古代散文 文学理论| 文集| 戏剧| 更多
玄幻/科幻| 悬疑/惊悚| 叛逆/成长| 爆笑/无厘头| 校园| 港台青春文学| 外国青春文学 更多
历史 哲学/宗教 社会科学 政治军事 传记 文化 古籍 管理 经济 成功励志 法律 语言文字
中国史| 世界史| 地方史志| 历史知识读物| 史料典籍| 史学理论| 考古文物 民族史志
政治| 军事| 中国政治| 国际政治| 外交/国际关系 哲学| 宗教| 美学 哲学知识读物| 中国古代哲学
历代帝王| 历史人物| 科学家| 体育明星| 文学家| 学者| 艺术家| 文娱明星 政治人物| 自传| 更多
世界文化| 中国文化| 中国民俗| 地域文化| 文化理论| 文化评述| 神秘现象
心理学| 人类学| 教育| 社会学| 新闻传播出版| 语言文字| 更多
古籍整理| 经部| 史类| 子部| 集部
经济理论| 中国经济| 国际经济| 经济通俗读物| 保险| 会计| 金融投资 市场营销| 管理学| 电子商务
成功激励| 口才演讲| 名人励志| 人际交往| 人生哲学| 心灵修养| 性格习惯 更多
法的理论| 法律法规| 国际法| 经济法| 更多
中国儿童文学 外国儿童文学 科普读物 绘本 动漫/卡通 幼儿启蒙
中国儿童文学| 外国儿童文学| 童话| 小说| 寓言传说|
动漫/卡通
科普| 百科| 历史读物| 生活常识| 益智游戏| 传统文化
幼儿启蒙| 少儿英语| 励志/成长| 艺术课堂
0-2岁| 3-6岁| 7岁及以上
绘画 书法篆刻 艺术理论 摄影 音乐
绘画理论| 国画| 油画| 素描速写| 水粉水彩
碑帖| 技法教程| 书法理论| 硬笔书法| 字帖| 篆刻
设计| 摄影后期| 摄影教程| 摄影理论| 摄影器材| 数码摄影| 作品集
影视理论| 影视赏析| 影视制作| 舞台/戏曲艺术
钢琴| 吉它| 理论/欣赏| 声乐| 通俗音乐| 外国音乐| 中国民族音乐| 作曲/指挥
宝石| 雕品| 古代家具| 钱币| 收藏百科| 收藏随笔| 书画| 陶瓷| 玉器
艺术理论| 雕塑| 工艺美术| 建筑艺术| 民间艺术| 人体艺术| 艺术类考试
美食 保健/心理健康 旅游 家庭教育 家居休闲
饮食文化| 保健食谱| 家常食谱| 八大菜系| 餐饮指南| 世界美食| 更多
健康百科| 健身| 心理健康| 中老年| 中医保健 常见病| 更多
旅游随笔| 旅游攻略| 旅游画册| 城市自助游| 国内自助游| 国外自助游| 地图地理 更多
孕产百科| 育儿百科| 更多
美丽妆扮| 两性关系| 家居休闲| 个人理财
中小学教辅 外语 教材 医学 计算机 自然科学
语文阅读| 拓展读物| 高考| 初中通用| 高中通用| 工具书 教师用书| 更多
英语读物| 职业英语| 英语考试| 大学英语| 少儿英语 更多
研究生/本科/专科教材 | 职业技术培训| 中小学教材|
操作系统/系统开发| 数据库| 信息安全 程序设计| 电脑杂志| 计算机教材| 计算机考试认证 计算机理论| 计算机体系结构| 家庭与办公室用书| 企业软件开发与实施| 人工智能 软件工程/开发项目管理|
考试| 家庭教育| 自然科学| 科普读物| 医学| 农林业| 工业技术| 建筑
笔记本 布艺品 书签/藏书票
笔记本| 布艺品| 书签/藏书票| 明信片| 笺纸| 胶带| 其它
本书是复流形的一大经典,也是陈省身先生最著名的著作之一。该书是1995年版复流形理论第2版的修订版。本书以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。 本书的最大特点是复流形理论的微分几何方法是在S.- S. Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riema
《大学代数几何(英文版)》内容为:There are several good recent textbooks on algebraic geometry atthe graduate level.but not(to my knowledge)any designed for anundergraduate course.Humble notes are from a course given in twosuccessive y
拓扑学是数学的重要分支,内容丰富且研究途径众多,不少初学者视其为畏途。本书以点集拓扑学为基础,通过对一般拓扑学、拓扑动力系统、代数拓扑学、微分拓扑学中的一些专题论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些精彩画卷。本书主要内容包括:集合与序集、拓扑空间、几类重要的拓扑性质、紧空间与度量空间、离散拓扑动力系统、基本群及其应用、流形的嵌入。 本书可以作为数学类专业拓扑学课程的
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。
Though its title "Integral Geometry" may appear somewhat unusual in thiscontext it is nevertheless quite appropriate, for Integral Geometry is anoutgrowth of what in the olden days was referred to as "geometric probabil
本书介绍了等几何分析方法,它包括等几何有限元法、等几何边界元法以及等几何有限元-边界元耦合方法。本书分为9章。第1章为绪论,第2-4章介绍了等几何有限元法的基本理论及其在含贯穿裂纹的薄壳结构、含裂纹和孔洞缺陷的功能梯度薄壁结构和线性热-粘弹性问题中的应用,第5章介绍了瞬态热传导问题的等几何边界元法,第6和7章分别介绍了等几何边界元法在含体力的三维粘弹性力学问题和多维多尺度复合结构的热弹性-粘弹性力学问题中的应用,第8章介绍了三维弹性力
本书是微分流形和现代几何的一本人门教材,它从微分流形的定义出发,介绍了现代几何学研究中的各种基本概念和技巧。本书前两章为基础内容,主要介绍流形上的微积分并证明Stokes积分公式;后三章分别从几何、拓扑和整体分析三个方面阐述现代几何中的一些重要成果,如Gauss-Bonnet-Chern公式、Hodge定理以及Atiyah-Singer指标公式等。本书内容丰富、语言简洁,书中含有详细的例子和练习。凡具有微积分、线性代数、点集拓扑以及泛
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。包括包括:紧Kahler流形上复hessian方程的研究、偏微分方程和黎曼几何、不变体系、几何可变体系、瞬变体系和刚片、自由度与辛几何、代数几何和物理中的超弦理论、二维非线性偏微分方程、Ricci流、Gromov-Witten不变量理论、Kaehler-Ricci流,Kaehler-Ricci孤立子专享性,调和映射紧性,高余维平均曲率流等...
多变量基本超几何级数,由于它的产生具有深刻的根系统的代数表示论背景,亦称伴随根系统基本超几何级数。本书是作者结合自己的长期研究,系统介绍多变量基本超几何级数研究领域的主要理论、方法及其应用的著作。全书共十二章,内容包括单变量基本超几何级数的基本理论及经典结果、多变量基本超几何级数的引入与分类、求和与变换公式、U(n+1)级数的基本定理及其应用、算子算子恒等式及其应用、多变量Bailey变换及其应用、多维矩阵反演、行列式计算方法及其应用
本书是空间有向几何学系列研究之四。在平面《有向几何学》系列研究和《空间有向几何学》(上、下)等的基础上的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向体积法和有向体积定值法,对空间多边形和多面体拟重心线的有关问题进行深入、系统地研究,得到一系列的有关空间多边形和多面体重心线的有向度量定理,主要包括空间多边形和多面体重心线的共点共面定理、空间多边形和多面体顶点到重心线包络面有向距离公式、空间多边形和多面体顶点
一个空间嵌入另一空间(例如欧氏空间)是否可能以及这些嵌入所依据的同痕的分类问题,已成为拓扑学中重要的中心问题之一。也是许多拓扑学家从各种不同角度用各种不同方法研究的对象之一。本书是作者从1954年以来在这方面的研究工作的一个总结报告,它的方法在于研究空间的去核p重积,即将p重积除去对角以后所余的空间,这一概念可追溯到vanKampen早在1932年的一篇重要论文。其次再应用PASmith有关周期变换的理论以获得若干作为Smith特殊群
本书根据作者在芝加哥大学、加利福尼亚大学等高校讲授拓扑学的讲义编写而成,是一部经典研究生教材。作者在泛函分析和拓扑学领域颇有成就,有较广泛的影响力。目次:预备知识,①拓扑空间,②Moore-Smith收敛,③积空间和商空间④嵌入和度量化,⑤紧空间,⑥一致空间,⑦函数空间。...
本书以作者提供的具备测度论和基础泛函分析的一二年级研究生十五周课程为基础,为了计算无限维空间中特殊算子谱,特别是Hilbert空间中的算子,书中在算子理论基本问题的内容框架内讲述了现代分析的基本工具。工具众多,提供了解决超越谱计算之外问题的更加具体方法的基础,这些问题如量子物理数学基础,非交换K理论,简单C*代数的分类。目次:谱理论和Banach代数;Hilbert空间上的算子;渐进:紧扰动和Fredholm理论;方法和应用...
本书是空间有向几何学系列研究之三。在平面《有向几何学》系列研究和《空间有向几何学》(上、下)等的基础上的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向体积法和有向体积定值法,对空间多边形和多面体重心线的有关问题进行深入、系统地研究,得到一系列的有关多面体重心线的有向度量定理,主要包括一些多面体重心线的共点共面定理、多面体顶点到重心线包络面有向距离公式、多面体顶点到重心线面有向距离公式,以及以上定理和公式的应
在第1章中编者呈现了最主要的理论,并给出大量的例题,这有助于解决后面的问题。第2章提出了一些问题,要解决这些问题,你需要对在理论与例题这一章中出现的材料有一个基本的理解。在第3章中你将会发现一些既需要更深刻理解这一理论的问题,也需要提升在关键概念之间建立关联的能力。在第4章和第5章中编者将提供这些问题的对应解答。本书适合于正在接受数学奥林匹克训练的学生以及期待在三角学及其相关领域提升能力的读者参考阅读...
这本小册子中研究的问题是只利用一把直尺或者再利用某个辅助图形作图,与此有关的是研究射影几何的一些基本概念。这本小册子的读者对象是高年级中学生、教育学院和大学低年级学生以及数学教师...
本书系统地介绍三维欧氏空间中的曲线与曲面论的基本概念和方法。通过引入刻画曲线、曲面形状的几何量,我们将讨论这些几何量对曲线、曲面形状的影响。由于这类几何量不依赖于局部参数化的选择,局部定义的几何量以自然的方式定义了整体曲面上的整体几何量,我们也将系统研究整体几何量是如何反映曲线、曲面的形状与拓扑,特别是Gauss-Bonnet公式及其几何推论。我们还将系统介绍经典复分析方法在极小曲面方面有趣应用,主要包括:极小曲面的Weierstra
《用于边界值问题的拓扑不动点原理》旨在系统介绍凸空间上的单值和多值映射的拓扑不动点理论。内容包括常微分方程的边界值问题和在动力系统中的应用,是第一本用非度量空间讲述拓扑不动点理论的专著。尽管理论上的讲述和书中精选的应用实例相结合,但本身具有很强的独立性。《用于边界值问题的拓扑不动点原理》利用不动点理论求微分方程的解,独具特色。目次:理论背景;一般原理;在微分方程中的应用...
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用...
美国哈佛大学从1977年以来曾多次举办“椭圆曲线”班,《椭圆曲线算术(第2版)(英文版)》作者是该讨论班成员之一。椭圆曲线是一个古老的数学课题,最近由于代数数论和代数几何等现代数学的进展,使它得到了新的活力。本书则是以上述观点处理椭圆函数的算术理论,包括椭圆曲线的几何背景,椭圆曲线的形式群,有限域上的椭圆函数、复数、局部域和整体域等基本内容,最后两章讨论整数和有理数。书末有三个附录。这是第二版,在第一版的基础上增加了“椭圆曲线的
本书主要内容包括:欧氏空间上的不确定原理;Heisenberg群上的不确定原理;二步幂零Lie群上的不确定原理;非紧缺1对称空间上的不确定原理等...
本书介绍了计算几何中的基本概念,以及求解诸多实际应用问题的算法,概括了求解计算几何问题所特有的算法思想、几何结构与数据结构...
one of the main themes of this book is the conflict between the "flexibility' and the "rigidity properties of the hyperbolic manifolds: the first radical difference arises between the case of dimension 2 and the case
《椭圆曲线(第2版)》(作者胡斯迈勒)divides naturally into several parts according to the level of the material,the background required of the reader, and the style of presentation with respect to details of proofs. For example, the fir
计算几何作为计算机科学的一个分支,本书对其新发展和研究工作进行了综述性的介绍。论述了KDTIM理论的内涵;通过对计算几何中的一些问题的研究,提出一些新的理论与算法;将计算几何的理论方法应用于空间数据挖掘中,用计算几何中的理论和方法解决知识发现中的一些问题。本书适合从事计算几何、数据挖掘等计算机科学相关领域的工作人员阅读...
this edition of the book has been extended to take account of one of these developments, one which was just hinted at in the second edition. a close and very fruitful relationship has been discovered between geometric
guoliang xu和qin zhang编写的这本《计算几何中的几何偏微分方程方法》的主要内容包括几何偏微分方程的构造方法、各种微分几何算子的离散化方法及其离散格式的收敛性、几何偏微分方程数值求解的有限差分法、有限元法以及水平集方法,还包括几何偏微分方程在曲而平滑、曲面拼接、n边洞填补、自由曲面设计、曲面重构、曲而恢复、分子曲面构造以及三维实体几何形变中的应用。 本书内容新颖、文字简练、可读性强,可作为理工科院校的应用数学、计算数学
是关于一般拓扑的一部经典著作。书中系统地介绍了一般拓扑的基本知识。正文共分七章,包括拓扑空间、Moore-Smith收敛、乘积空间和商空间、嵌入和度量化、紧空间、一致空间、函数空间。此外,还有一章预备知识和一个附录,每章之后有大量问题,作为正文的补充和延伸,有助于读者更好地理解正文的内容,书末由译者加写了一个附录,介绍了早期不分明拓扑学发展的概貌。 《数学名著译丛:一般拓扑学》正文七章由吴从忻翻译,其余由吴让泉翻译,增添的附录由
古典几何学的历史悠久、题材丰富,如欧氏几何、解析几何、射影几何、非欧几何等在知识上、思想上和方法论上都各有精到的建树与特色,而且也都是整个近代数学一个不可缺少的基础与活力源泉。项武义、王申怀、潘养廉编写的《古典几何学》采用近代观点系统介绍了古典几何学的基础知识(其中包括欧氏几何、非欧几何、解析几何、球面几何与三角、射影几何等),并着重对各种古典几何体系进行比较分析和全局探讨,突出它们的几何思想和在方法论上的创见。 ...
本书提供了俄罗斯在中学,其中包括在专门化的学校学习的几乎所有立体几何的问题及各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手及教练员参考阅读...
《物理学家用的几何代数》是一部不仅让对物理学感兴趣的读者的读物,也是一本对物理现实感兴趣的读者的读物。几何代数在过去的十年中得到了快速发展,成为物理和工程领域的一个重要课题。作者是该领域的一个领头人物,做了许多重大进展。书中带领读者走进该领域,其中包括好多应用,黑洞物理学和量子计算,非常适于作为一本几何代数物理应用方面的研究生教程...
华盛顿所著的《割圆域导论(第2版)(英文版)》是一部讲述数论很重要领域的教程,包括p进数L—函数、类数、割圆单元、费马最后定理和Z—p扩展Iwasawa定理。这是第二版,新增加了许多内容,如Thaine,Kolyvagin,andRubin的著作、主猜想的证明,以及一章最新其他进展。目次:费曼大定理;基本结果;狄里克莱性质;狄里克莱L级数和类数公式;p进数和伯努利数;Stickelberger定理;p进数L—函数的Iwasawa结构;
This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back-ground in calculus, linear algebra, and basic point-set topol
The theory of elliptic curves involves a blend of algebra,geometry, analysis,and number theory.This book stresses this interplay as it develops the basic theory,providing an opportunity for readers to appreciate the u
Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ...) and objectives, in particular to understand certain classes of (compact) Riemannia
《几何定理机器证明的几何不变量方法》可以作为数学、计算机科学以及相关工程领域的科研人员、教师以及研究生了解几何定理机器证明几何不变量方法的参考书, 也可以作为高等院校与中学教师进行几何教育改革的参考书...
《空间几何常数》可作为基础数学专业泛函分析方向的研究生教材或参考书,也可供有关专业的教师和科研工作者参考...
这是一部讲述代数曲线几何的专著,分为3卷,内容综合,全面,自成体系。本书是这部专著的下册,致力于代数曲线模理论的基础研究,作者均是在代数曲线几何发展中起到过积极作用的数学家。这门科目当发展繁荣,活跃,不仅体现在数学领域,而且体现在在和理论物理的交叉领域。手法特殊,将代数几何、复解析和拓扑/组合论很好地融合在一起,重点讲述了Teichmüller理论、模的胞状分解和Witten连通。丰富严谨的材料对想学习这么学科的学生和科研人员都是弥足
本书是为培养21世纪的中学数学教师服务的,所以它不局限于现行中学数学教材中的几何部分,还考虑到知识不断更新和中学教材变革的需要. 因此,本书突破了传统体系,介绍数学结构的观点,现代公理化的方法,分析比较了几种几何公理系统,详细地介绍了张景中公理系统. 让读者从整体上对初等几何研究的对象、方法和它的基础地位有一个大概的了解. 本书是师范院校数学专业的必修课教材,也可为中学数学教师的参考书...
《欧几里得原理十三本书》共分为3卷,这是第3卷,作者Arthur Stanley Eddington(亚瑟·斯坦利·爱丁顿,英国)在本书中完整记录欧几里得的古典数学思想,包含圆,线,角,锥体,圆柱体等元素的数学解读、数学分析、数学评论,涵盖中世纪文艺复习时期的评论家的主要观点,值得一读...
这本《美国中学几何教程》是约瑟夫 · 雷伊的经典图书,包括高级代数与解析几何,本书以美国中学课本为基础,详细介绍了中学几何的一些知识点,还配有相应的例题、习题并给出了详细的解答...
《几何新方法和新体系》可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林匹克工作者和参赛者以及数学研究工作者参考...
《计算几何(第3版)》写的十分详细,适合初学者入门学习,老手也可丛中学到不少知识——Computational geometry,English,written in great detail,suitable for beginners study entry,a pair of veterans may also learn a lot of knowledge等...
解三角形是三角学的一个重要内容.本书首先介绍了三角形的元素之间的关系,为解三角形提供理论依据. 然后比较详细地讨论了三角形的解法.最后举例说明了三角学在几何学、物理学、测量、航海等方面的应用,以及有关的恒等式和不等式的证明. 本书适合初、高中师生及数学爱好者参考阅读...
美国哈佛大学从1977年开始,曾多次举办”椭圆曲线” 班,《椭圆曲线算术中的高等论题(英文版)》作者是该讨论班成员之一。椭圆曲线是一个古老的数学课题,最近由于代数数论和代数几何等现代数学的进展,使它得到了新的活力。《椭圆曲线算术中的高等论题(英文版)》是以1986年版的《椭圆曲线的算术理论》为蓝本,但在知识体系上做了较大的改动形成了这不教程,讲述上也更加专业,但在思想上是作者前《椭圆曲线算术中的高等论题(英文版)》的延续。包括椭圆和模
《几何学教程(平面几何卷)》是法国著名数学家j.hadamard的一部名著,译者为我国著名初等几何专家朱德祥教授和其子朱维宗教授。该书系统地阐述了初等平面几何各部分的主要内容,不仅具有逻辑的严谨性,而且有精确的阐释与论断;书中附有大量的习题(包括杂题、竞赛试题以及所有这些习题的详细解答),可供读者钻研和复习,附录部分主要介绍几何方法的基本原理以及欧几里得公理、切圆问题、面积概念、马尔法提问题等。该书迄今始终是初等几何方面的重要文
本书是一部本科生水平的几何教程。通过《几何》可以了解作者的思想以及作者在该领域做出的重大贡献。书中首先讲述欧几里得基础知识,然后进一步引导读者了解欧几里得几何的关键性内容、近期发展和更多的最新结果,许多证明可以加深对内容的理解。内容有坐标的引入、区域理论、几何学结构和有限场扩展、平行公设历史、多种非欧几里得几何和规则半规则多面体。 《几何英文(影印版)》是数学专业中等及以上水平读者很难得的一本入门书籍...
《卡拉比–丘流形和相关几何》是由2001年夏天norway,nordfjordeid讲述辛几何的讲义扩展而成。突出讲述calabi-yau是本书的最大特点。第一部分讲述完整群和已校准子流形,强调特殊拉格朗日算符子流形和syz猜想;第二部分运用代数几何讲述calabi-yau流形和镜子对称。最后一部分讲述紧hyperkahler流形,它具有的几何结果和calabi-yau流形有很大的关系。各部分之间过渡自然,衔接紧密紧密,是一部很
本书分为5章, 在介绍一些Banach空间的基本知识、Banach空间的弱拓扑与自反性的基础上, 一方面叙述Banach空间几何理论的基本内容等 ; 另一方面研究了Banach空间几何和逼近性质, 包括逼近紧和度量投影的连续性、距离函数的可导性与逼近紧性以及Banach空间几何性质与太阳集等...
[日]熊田千佳慕著,张勇译
老王子
林奕含
梁实秋
(美)艾玛·克莱因(EmmaCline
刘争争
京ICP备09013606号-3京信市监发[2002]122号海淀公安分局备案编号:1101083394
营业执照出版物经营许可证 京出发京批字第直110071