书馨卡帮你省薪
欢迎光临中图网 请 | 注册
> >>
微分几何中的度量结构

微分几何中的度量结构

出版社:世界图书出版公司出版时间:2015-01-01
开本: 24开 页数: 226
本类榜单:自然科学销量榜
中 图 价:¥42.1(8.6折) 定价  ¥49.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

微分几何中的度量结构 版权信息

  • ISBN:9787510086335
  • 条形码:9787510086335 ; 978-7-5100-8633-5
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

微分几何中的度量结构 本书特色

沃尔斯齐普所著的《微分几何中的度量结构(英文版)》是一部学习微分流形和纤维丛的入门书籍,从矩阵微分几何的观点出发研究纤维丛,讨论了欧几里得丛;黎曼连通;曲率和Chern-Weil理论;也包括Pontrjagin, Euler, 和Chern 的向量丛特征类,并通过球上的丛详细阐释了这些概念。适用于对微分几何、流形以及丛感兴趣的读者。

微分几何中的度量结构 内容简介

  This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back-ground in calculus, linear algebra, and basic point-set topology.  The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are covered, culnunating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv-alence classes of functions, but later that the tangent space of Rl is "the same" as Rn. We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.

微分几何中的度量结构 目录

Preface
Chapter 1.Differentiable Manifolds
1.Basic Definitions
2.Differentiable Maps
3.Tangent Vectors
4.The Derivative
5.The Inverse and Implicit Function Theorems
6.Submanifolds
7.Vector Fields
8.The Lie Bracket
9.Distributions and Frobenius Theorem
10.Multilinear Algebra and Tensors
11.Tensor Fields and Differential Forms
12.Integration on Chains
13.The Local Version of Stokes' Theorem
14.Orientation and the Global Version of Stokes' Theorem
15.Some Applications of Stokes' Theorem

Chapter 2.Fiber Bundles
1.Basic Definitions and Examples
2.Principal and Associated Bundles
3.The Tangent Bundle of Sn
4.Cross—Sections of Bundles
5.Pullback and Normal Bundles
6.Fibrations and the Homotopy Lifting/Covering Properties
7.Grassmannians and Universal Bundles

Chapter 3.Homotopy Groups and Bundles Over Spheres
1.Differentiable Approximations
2.Homotopy Groups
3.The Homotopy Sequence of a Fibration
4.Bundles Over Spheres
5.The Vector Bundles Over Low—Dimensional Spheres

Chapter 4.Connections and Curvature
1.Connections on Vector Bundles
2.Covariant Derivatives
3.The Curvature Tensor of a Connection
4.Connections on Manifolds
5.Connections on Principal Bundles

Chapter 5.Metric Structures
1.Euclidean Bundles and Riemannian Manifolds
2.Riemannian Connections
3.Curvature Quantifiers
4.Isometric Immersions
5.Riemannian Submersions
6.The Gauss Lemma
7.Length—Minimizing Properties of Geodesics
8.First and Second Variation of Arc—Length
9.Curvature and Topology
10.Actions of Compact Lie Groups

Chapter 6.Characteristic Classes
1.The Weil Homomorphism
2.Pontrjagin Classes
3.The Euler Class
4.The Whitney Sum Formula for Pontrjagin and Euler Classes
5.Some Examples
6.The Unit Sphere Bundle and the Euler Class
7.The Generalized Gauss—Bonnet Theorem
8.Complex and Symplectic Vector Spaces
9.Chern Classes
Bibliography
Index
展开全部

微分几何中的度量结构 作者简介

Gerard Walschap( G.沃尔斯齐普,美国)是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服