书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
代数曲线几何-第2卷 第2分册

代数曲线几何-第2卷 第2分册

出版社:世界图书出版公司出版时间:2014-08-01
开本: 24开 页数: 963
读者评分:5分1条评论
本类榜单:自然科学销量榜
中 图 价:¥85.1(8.6折) 定价  ¥99.0 登录后可看到会员价
暂时缺货 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

代数曲线几何-第2卷 第2分册 版权信息

  • ISBN:9787510077777
  • 条形码:9787510077777 ; 978-7-5100-7777-7
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

代数曲线几何-第2卷 第2分册 本书特色

阿尔巴雷洛所著的《代数曲线几何(第2卷第2分册)(英文版)》是一部讲述代数曲线几何的专著,致力于代数曲线模理论的基础研究,作者是在代数曲线几何发展中起到过积极作用的数学家。这门科目当发展繁荣,活跃,不仅体现在数学领域,而且体现在在和理论物理的交叉领域。手法特殊,将代数几何、复解析和拓扑/组合论很好地融合在一起,重点讲述了Teichmüller理论、模的胞状分解和Witten连通。丰富严谨的材料对想学习这门学科的学生和科研人员都是弥足珍贵的。

代数曲线几何-第2卷 第2分册 内容简介

这是一部讲述代数曲线几何的专著,分为3卷,内容综合,全面,自成体系。本书是这部专著的下册,致力于代数曲线模理论的基础研究,作者均是在代数曲线几何发展中起到过积极作用的数学家。这门科目当发展繁荣,活跃,不仅体现在数学领域,而且体现在在和理论物理的交叉领域。手法特殊,将代数几何、复解析和拓扑/组合论很好地融合在一起,重点讲述了 Teichmüller理论、模的胞状分解和Witten连通。丰富严谨的材料对想学习这么学科的学生和科研人员都是弥足珍贵的。

代数曲线几何-第2卷 第2分册 目录

Guide for the Reader
List of Symbols
Chapter Ⅸ.The Hilbert Scheme
  1.Introduction
  2.The idea of the Hilbert scheme
  3.Flatness
  4.Construction of the Hilbert scheme
  5.The characteristic system
  6.Mumford's example
  7.Variants of the Hilbert scheme
  8.Tangent space computations
  9.Cn families of projective manifolds
  10.Bibliographical notes and further reading
  11.Exercises
Chapter Ⅹ.Nodal curves
  1.Introduction
  2.Elementary theory of nodal curves
  3.Stable curves
  4.Stable reduction
  5.Isomorphisms of families of stable curves
  6.The stable model, contraction, and projection
  7.Clutching
  8.Stabilization
  9.Vanishing cycles and the Picard-Lefschetz transformation
  10.Bibliographical notes and further reading
  11.Exercises
Chapter Ⅺ.Elementary deformation theory and some applications
  1.Introduction
  2.Deformations of manifolds
  3.Deformations of nodal curves
  4.The concept of Kuranishi family.
  5.The Hilbert scheme of v-canonical curves
  6.Construction of Kuranishi families
  7.The Kuranishi family and continuous deformations
  8.The period map and the local Torelli theorem
  9.Curvature of the Hodge bundles
  10.Deformations of symmetric products
  11.Bibliographical notes and further reading
Chapter ⅩⅡ.The moduli space of stable curves
  1.Introduction
  2.Construction of' moduli space as an analvtic SDace
  3.Moduli spaces as algebraic spaces
  4.The moduli space of curves as an orbifold
  5.The moduli space of curves as a stack, I.
  6.he classical theory of descent for quasi-coherent sheaves
  7.The moduli space of curves as a stack, Ⅱ
  8.Deligne-Mumford stacks
  9.Back to algebraic spaces
  10.The universal curve, projections and clutchings
  11.Bibliographical notes and further reading
  12.Exercises
Chapter ⅩⅢ.Line bundles on moduli
  1.Introduction
  2.Line bundles on the moduli stack of stable curves
  3.The tangent bundle to moduli and related constructions
  4.The determinant of the cohomology and some aDDlications
  5.The Deligne pairing
  6.The Picard group of moduli space
  7.Mumford's formula
  8.The Picard group of the hyperelliptic locus
  9.Bibliographical notes and further reading
Chapter ⅩⅣ.Projectivity of the moduli space of stable
  1.Introduction
  2.A little invariant theory
  3.The invariant-theoretic stability of linearly stable smooth curves
  4.Numerical inequalities for families of stable curves
  5.Projectivity of moduli spaces
  6.Bibliographical notes and further reading
Chapter ⅩⅤ.The Teichmuller point of view
  1.Introduction
  2.Teichmuller space and the mapping class group
  3.A little surface topology
  4.Quadratic differentials and Teichmuller deformations
  5.The geometry associated to a quadratic differential
  6.The proof of Teichmuller's uniqueness theorem
  7.Simple connectedness of the moduli stack of stable curves
  8.Going to the boundary of Teichmuller space
  9.Bibliographical notes and further reading
  10.Exercises
Chapter ⅩⅥ.Smooth Galois covers of moduli spaces
  1.Introduction
  2.Level structures on smooth curves
  3.Automorphisms of stable curves
  4.Compactifying moduli of curves with level structure, a first attempt
  5.Admissible G-covers
  6.Automorphisms of admissible covers
  7.Smooth covers of Mq
  8.Totally unimodular lattices
  9.Smooth covers of Mg,n
  10.Bibliographical notes and further reading
  11.Exercises
Chapter ⅩⅦ.Cycles in the moduli spaces of stable curves
  1.Introduction
  2.Algebraic cycles on quotients by finite groups
  3.Tautological classes on moduli spaces of curves
  4.Tautological relations and the tautological ring
  5.Mumford's relations for the Hodge classes
  6.Further considerations on cycles on moduli spaces
  7.The Chow ring of MO,P
  8.Bibliographical notes and further reading
  9.Exercises
Chapter ⅩⅧ.Cellular decomposition of moduli spaces
  1.Introduction
  2.The arc system complex
  3.Ribbon graphs
  4.The idea behind the cellular decomposition of Mg,n
  5.Uniformization
  6.Hyperbolic geometry
  7.The hyperbolic spine and the definition ofψ
  8.The equivariant cellular decomposition of Teichmuller space
  9.Stable ribbon graphs
  10.Extending the cellular decomposition to a partial compactification of Teichmuller space
  11.The continuity of ψ
  12.Odds and ends
  13.Bibliographical notes and further reading
Chapter ⅪⅩ.First consequences of the cellular decomposition
  1.Introduction
  2.The vanishing theorems for the rational homology of Mg,p
  3.Comparing the cohomology of Mg,n to the one of its boundary strata
  4.The second rational cohomology group of Mg,n
  5.A quick overview of the stable rational cohomology of Mg,n and the computation of H1(Mg,n) and H2(Mg.n)
  6.A closer look at the orbicell decomposition of moduli spaces
  7.Combinatorial expression for the classes ψi
  8.A volume computation
  9.Bibliographical notes and further reading
  10.Exercises
Chapter ⅩⅩ.Intersection theory of tautological classes
  1.Introduction
  2.Witten's generating series
  3.Virasoro operators and the KdV hierarchy
  4.The combinatorial identity
  5.Feynman diagrams and matrix models
  6.Kontsevich's matrix model and the eauation L2Z=0
  7.A nonvanishing theorem
  8.A brief review of equivariant cohomology and the virtual Euler-Poincare characteristic
  9.The virtual Euler-Poincare characteristic of Mg,n
  10.A very quick tour of Gromov-Witten invariants
  11.Bibliographical notes and further reading
  12.Exercises
Chapter ⅩⅪ.Brill-Noether theory on a moving curve
  1.Introduction
  2.The relative Picard variety
  3.Brill-Noether varieties on moving curves
  4.Looijenga's vanishing theorem
  5.The Zariski tangent spaces to the Brill-Noether varieties
  6.The μ1 homomorphism
  7.Lazarsfeld's proof of Petri's conjecture
  8.The normal bundle and Horikawa's theory
  9. Ramification
  10.Plane curves
  11.The Hurwitz scheme and its irreducibility
  12.Plane curves and g1d's
  13.Unirationality results
  14.Bibliographical notes and further reading
  15.Exercises
Bibliography
Index
展开全部

代数曲线几何-第2卷 第2分册 作者简介

Enrico Arbarello是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

商品评论(1条)
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服