小说 青春文学 中国散文 外国散文 悬疑推理 文学理论 文集 世界名著
外国小说| 中国当代小说| 中国古典小说| 中国近现代小说| 悬疑推理| 科幻小说 世界名著 四大名著| 作品集| 更多
外国诗歌| 中国古诗词| 中国现当代诗歌| 外国散文| 中国现当代散文| 中国古代散文 文学理论| 文集| 戏剧| 更多
玄幻/科幻| 悬疑/惊悚| 叛逆/成长| 爆笑/无厘头| 校园| 港台青春文学| 外国青春文学 更多
历史 哲学/宗教 社会科学 政治军事 传记 文化 古籍 管理 经济 成功励志 法律 语言文字
中国史| 世界史| 地方史志| 历史知识读物| 史料典籍| 史学理论| 考古文物 民族史志
政治| 军事| 中国政治| 国际政治| 外交/国际关系 哲学| 宗教| 美学 哲学知识读物| 中国古代哲学
历代帝王| 历史人物| 科学家| 体育明星| 文学家| 学者| 艺术家| 文娱明星 政治人物| 自传| 更多
世界文化| 中国文化| 中国民俗| 地域文化| 文化理论| 文化评述| 神秘现象
心理学| 人类学| 教育| 社会学| 新闻传播出版| 语言文字| 更多
古籍整理| 经部| 史类| 子部| 集部
经济理论| 中国经济| 国际经济| 经济通俗读物| 保险| 会计| 金融投资 市场营销| 管理学| 电子商务
成功激励| 口才演讲| 名人励志| 人际交往| 人生哲学| 心灵修养| 性格习惯 更多
法的理论| 法律法规| 国际法| 经济法| 更多
中国儿童文学 外国儿童文学 科普读物 绘本 动漫/卡通 幼儿启蒙
中国儿童文学| 外国儿童文学| 童话| 小说| 寓言传说|
动漫/卡通
科普| 百科| 历史读物| 生活常识| 益智游戏| 传统文化
幼儿启蒙| 少儿英语| 励志/成长| 艺术课堂
0-2岁| 3-6岁| 7岁及以上
绘画 书法篆刻 艺术理论 摄影 音乐
绘画理论| 国画| 油画| 素描速写| 水粉水彩
碑帖| 技法教程| 书法理论| 硬笔书法| 字帖| 篆刻
设计| 摄影后期| 摄影教程| 摄影理论| 摄影器材| 数码摄影| 作品集
影视理论| 影视赏析| 影视制作| 舞台/戏曲艺术
钢琴| 吉它| 理论/欣赏| 声乐| 通俗音乐| 外国音乐| 中国民族音乐| 作曲/指挥
宝石| 雕品| 古代家具| 钱币| 收藏百科| 收藏随笔| 书画| 陶瓷| 玉器
艺术理论| 雕塑| 工艺美术| 建筑艺术| 民间艺术| 人体艺术| 艺术类考试
美食 保健/心理健康 旅游 家庭教育 家居休闲
饮食文化| 保健食谱| 家常食谱| 八大菜系| 餐饮指南| 世界美食| 更多
健康百科| 健身| 心理健康| 中老年| 中医保健 常见病| 更多
旅游随笔| 旅游攻略| 旅游画册| 城市自助游| 国内自助游| 国外自助游| 地图地理 更多
孕产百科| 育儿百科| 更多
美丽妆扮| 两性关系| 家居休闲| 个人理财
中小学教辅 外语 教材 医学 计算机 自然科学
语文阅读| 拓展读物| 高考| 初中通用| 高中通用| 工具书 教师用书| 更多
英语读物| 职业英语| 英语考试| 大学英语| 少儿英语 更多
研究生/本科/专科教材 | 职业技术培训| 中小学教材|
操作系统/系统开发| 数据库| 信息安全 程序设计| 电脑杂志| 计算机教材| 计算机考试认证 计算机理论| 计算机体系结构| 家庭与办公室用书| 企业软件开发与实施| 人工智能 软件工程/开发项目管理|
考试| 家庭教育| 自然科学| 科普读物| 医学| 农林业| 工业技术| 建筑
笔记本 布艺品 书签/藏书票
笔记本| 布艺品| 书签/藏书票| 明信片| 笺纸| 胶带| 其它
本书分5章,内容包括:微分流形引论,张量分析,黎曼几何基础,测地线理论及子流形几何等...
全书共分三篇。第一篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及国家级。省
本书共分10章, 主要内容涉及几类重要的随机偏微分方程及其随机动力系统。前3章着重介绍概率论以及随机过程中的一些预备知识,包括ito随机积分理论;从第4章开始,主要讨论由布朗运动以及lévy过程驱动的随机非线性偏微分方程。本书详细介绍了这些随机偏微分方程的解的存在性理论及其长时间行为,如随机整体吸引子及其hausdorff维数估计等理论,涵盖了这些方程的一些前沿结果以及作者研究的最新成果。 本书可供大学数学专业、应用数学专业和计算数
本书分为三角函数测角法, 三角函数表, 三角形的解法以及习题四部分, 详细地介绍了平面三角的相关知识。主要包括: 锐角三角函数 ; 90°到360°间各角的三角函数 ; 负角及大于360°的角 ; 将函数式化为适于对数计算的 问降取...
《几何原本》的发行量仅次于《圣经》而位居世界第二。 从两千多年前开始,就一直都是学习数学几何的主要教材。 中的一题一图,并附有精美插画。 经过了数次修订和改版,是最为读者首肯的最新版本...
《圆锥曲线论》是古希腊演绎几何的高成就,在17世纪笛卡儿和费马的坐标几何出现之前,阿波罗尼奥斯用纯几何地方法研究圆锥曲线,它得到今日解析几何才能得出的一些主要结论,着实令人惊叹,它几乎使近20个世纪的后人在这方面未增添多少新内容。直到17世纪解析几何的出现,才使研究它的方法有所替代。《圆锥曲线论(卷5-7)》旨在将古希腊经典数学的思想介绍给国内的学者,填补古希腊经典数学汉译本缺失的空白。学习它对于理解数学的演绎体系,研究数学思想及
《欧几里得原理十三本书》共分为3卷,这是第2卷,作者Arthur Stanley Eddington(亚瑟·斯坦利·爱丁顿,英国)在本书中完整记录欧几里得的古典数学思想,包含圆,线,角,锥体,圆柱体等元素的数学解读、数学分析、数学评论,涵盖中世纪文艺复习时期的评论家的主要观点,值得一读...
《构造地质学的理论方法与实践丛书:构造微分几何学》主要介绍经典微分几何学中有关空间曲线和曲面的基本原理、数值计算方法,以及在构造地质学中的初步应用。对地质构造三维空间形态和几何特征进行精确的观察和描述;对变形过程的解析需要对地质体变形前后的几何形态进行精确观测和对比分析,包括构造层面的三维几何形态、面状和线状构造的空间几何关系等,进而对其动力学进行解析和求解...
This book project began as an attempt to sort through the literature on Finsler geometry. It was our intention to write a systematic account about that part of the material which is both elementary and indispensable. We
本书是为培养21世纪的中学数学教师服务的,所以它不局限于现行中学数学教材中的几何部分,还考虑到知识不断更新和中学教材变革的需要. 因此,本书突破了传统体系,介绍数学结构的观点,现代公理化的方法,分析比较了几种几何公理系统,详细地介绍了张景中公理系统. 让读者从整体上对初等几何研究的对象、方法和它的基础地位有一个大概的了解. 本书是师范院校数学专业的必修课教材,也可为中学数学教师的参考书...
本书以Hilbert空间中线性算子数值域以及相关问题为主线,对线性算子数值域基本性质以及应用进行阐述.本书的内容框架如下:章主要介绍Hilbert空间中线性算子数值域的基本性质.第2章主要介绍Hilbert空间中有界线性算子数值半径.第3章主要介绍Hilbert空间中一些特殊算子的数值域和数值半径的性质.第4章主要介绍由Hilbert空间中线性算子数值域推广而得的一些特殊数值域,将Hilbert空间中线性算子数值域研究提升到一个新的高
古希腊数学家欧几里得有价值的一部数学巨著,欧式几何的奠基之作。徐光启曾评价此书:“能精此书者,无一事不可精;好学此书者,无一事不可学。”爱因斯坦曾说:“如果欧几里得未能激发起你少年时代的科学热情,那么你肯定不会是一个天才的科学家。”除了《圣经》,再没有任何一种书像《几何原本》这样拥有如此众多的读者,被译成如此多种语言,它是的家庭藏书之珍品。域,而且对人类的宇宙观也产生了深刻的影响...
全套书对1978~2016年的全国高中数学联赛(包括全国女子竞赛、西部竞赛、东南竞赛、北方竞赛)、中国数学奥林匹克竞赛(CMO,即全国中学生数学冬令营)、中国国家队队员选拔赛以及IMO试题中的200余道平面几何试题进行了诠释,每道试题给出了尽可能多的解法(多的有近30种解法)及命题背景,以150余个专题讲座分4卷的形式对试题所涉及的有关知识或相关背景进行了深入的探讨,揭示了有关平面几何试题的一些命题途径.本套书极大地拓展了读者的视野,
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础...
现代微分几何在理论物理中扮演着重要的角色,并且在相对论、宇宙学、高能量物理和场论、热动力学、流体力学以及力学中的应用也日益突显。 本书作为一本微分几何教程,介绍了李导数、李群以及微分形式的引入方法,及其在理论物理中的广泛应用。 有物理和应用数学背景的读者学完本书,就可以更深入学习一些科研文献以及更高层次的纯数学理论...
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集...
梁实秋
泰戈尔
[英]蕾秋·乔伊斯 著,焦晓菊 译
汪曾祺
林奕含
阎连科
京ICP备09013606号-3京信市监发[2002]122号海淀公安分局备案编号:1101083394
营业执照出版物经营许可证 京出发京批字第直110071