-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
链接结构_关于嵌入完全图的直线中链接单形的组合结构(英文版) 版权信息
- ISBN:9787560394237
- 条形码:9787560394237 ; 978-7-5603-9423-7
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
链接结构_关于嵌入完全图的直线中链接单形的组合结构(英文版) 内容简介
Imagine two triangles in the three-dimensional space, such that an edge of the one pierces through the interior of the other, and vice versa. In such a geometrical situation, any continuous transformation that separates the two triangles would lead to an intersection of their boundaries at one moment, and so we call the two triangles and their boundaries linked (germ: "verschlungene Dreiecke"). It is a known fact in graph theory [8] that any embedding of the complete graph with 6 vertices K6 into R3 has at least one pair of those linked triangles. Prof.Dr.U.Brehm (TU-Dresden), who was my advisor during this diploma thesis, used the so called Gale diagrams to proof that any straight line embedding of the K6 contains either one or exactly three pairs of linked triangles. In Section 1.3.1 we will explain this technique, which leads to the proof of the corresponding Theorem 1.4, and we give visual examples for both cases in Figure 2.
链接结构_关于嵌入完全图的直线中链接单形的组合结构(英文版) 目录
-
普林斯顿微积分读本-(修订版)
¥69.3¥99 -
怎样解题
¥17.2¥29 -
数学-应用与思考
¥16.1¥32.8 -
高等代数思想方法分析及应用研究
¥25.3¥76 -
高等代数典型问题研究与实例探析
¥30.4¥92 -
数字唬人:用常识看穿无所不在的数字陷阱
¥16¥36.8