图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
对称群的表示论(英文)

对称群的表示论(英文)

出版社:哈尔滨工业大学出版社出版时间:2023-01-01
开本: 其他 页数: 683
本类榜单:自然科学销量榜
中 图 价:¥58.8(6.0折) 定价  ¥98.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

对称群的表示论(英文) 版权信息

  • ISBN:9787576706192
  • 条形码:9787576706192 ; 978-7-5767-0619-2
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

对称群的表示论(英文) 内容简介

本书共分为四个部分:**部分:对称群与对称函数。第二部分:赫克代数及其表示。第三部分:划分的可观测。第四部分:随机杨氏图的模型。

对称群的表示论(英文) 目录

preface Ⅰ Symmetric groups and symmetric functions 1 Representations of finite groups and semisimple algebras 1.1 Finite groups and their representations 1.2 Characters and constructions on representations 1.3 The non-commutative Fourier transform 1.4 Semisimple algebras and modules 1.5 The double commutant theory 2 Symmetric functions and the Frobenius-Schur isomorphism 2.1 Conjugacy classes of the symmetric groups 2.2 The five bases of the algebra of symmetric functions 2.3 The structure of graded self-adjoint Hopf algebra 2.4 The Frobenius-Schur isomorphism 2.5 The Schur-Weyl duality 3 Combinatorics of partitions and tableaux 3.1 Pieri rules and Murnaghan-Nakayama formula 3.2 The Robinson-Schensted-Knuth algorithm 3.3 Construction of the irreducible representations 3.4 The hook-length formula Ⅱ Hecke algebras and their representations 4 Hecke algebras and the Brauer-Cartan theory 4.1 Coxeter presentation of symmetric groups 4.2 Representation theory of algebras 4.3 Brauer-Cartan deformation theory 4.4 Structure of generic and specialized Hecke algebras 4.5 Polynomial construction of the q-Specht modules 5 Characters and dualities for Hecke algebras 5.1 Quantum groups and their Hopf algebra structure 5.2 Representation theory of the quantum groups 5.3 Jimbo-Schur-Weyl duality 5.4 Iwahori-Hecke duality 5.5 Hall-Littlewood polynomials and characters of Hecke algebras 6 Representations of the Hecke algebras specialized at q = 0 6.1 Non-commutative symmetric functions 6.2 Quasi-symmetric functions 6.3 The Hecke-Frobenius-Schur isomorphisms Ⅲ Observables of partitions 7 The Ivanov-Kerov algebra of observables 7.1 The algebra of partial permutations 7.2 Coordinates of Young diagrams and their moments 7.3 Change of basis in the algebra of observables 7.4 Observables and topology of Young diagrams 8 The Jucys-Murphy elements 8.1 The Gelfand-Tsetlin subalgebra of the symmetric group algebra 8.2 Jucys-Murphy elements acting on the Gelfand-Tsetlin basis . . 8.3 Observables as symmetric functions of the contents 9 Symmetric groups and free probability 9.1 Introduction to free probability 9.2 Free cumulants of Young diagrams 9.3 Transition measures and Jucys-Murphy elements 9.4 The algebra of admissible set partitions 10 The Stanley-Feray formula for characters and Kerov polynomials 10.1 New observables of Young diagrams 10.2 The Stanley-Feray formula for characters of symmetric groups 10.3 Combinatorics of the Kerov polynomials Ⅳ Models of random Young diagrams 11 Representations of the infinite symmetric group 11.1 Harmonic analysis on the Young graph and extremal characters 11.2 The bi-infinite symmetric group and the Olshanski semigroup 11.3 Classification of the admissible representations 11.4 Spherical representations and the Gelfand-Naimark-Segal cons-truction 12 Asymptoties of central measures 12.1 Free quasi-symmetric functions 12.2 Combinatorics of central measures 12.3 Gaussian behavior of the observables 13 Asymptotics of Plancherel and Schur-Weyl measures 13.1 The Plancherel and Schur-Weyl models 13.2 Limit shapes of large random Young diagrams 13.3 Kerov's central limit theorem for characters Appendix Appendix A Representation theory of semisimple Lie algebras A.1 Nilpotent, solvable and semisimple algebras A.2 Root system of a semisimple complex algebra A.3 The highest weight theory References Index 编辑手记
展开全部

对称群的表示论(英文) 作者简介

皮埃尔-洛伊克·梅利奥特,法国数学家,巴黎第十一大学教授。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服