扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
中医基础理论
-
>
高校军事课教程
-
>
思想道德与法治(2021年版)
-
>
毛泽东思想和中国特色社会主义理论体系概论(2021年版)
-
>
中医内科学·全国中医药行业高等教育“十四五”规划教材
-
>
中医诊断学--新世纪第五版
-
>
中药学·全国中医药行业高等教育“十四五”规划教材
盲图像分离理论与应用 版权信息
- ISBN:9787030642929
- 条形码:9787030642929 ; 978-7-03-064292-9
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
盲图像分离理论与应用 内容简介
本书是对盲源分离技术的*新研究成果进行的调研和总结, 共9章, 内容包括绪论、基本理论、基于变换域SCA的盲图像分离、抗加性高斯白噪声的盲图像分离、抗混合噪声的盲图像源分离、高效的盲图像分离、基于稀疏盲图像分离的遥感影像融合、基于形态成分分析的盲图像分离与应用、基于深度学习的盲源分离。
盲图像分离理论与应用 目录
目录
第1章 绪论 1
1.1 引言 1
1.2 盲源分离系统分类 1
1.2.1 多通道源分离 1
1.2.2 单通道源分离 3
1.2.3 混响源分离 4
1.3 盲源分离的研究历史、现状与应用 5
1.3.1 经典盲源分离的研究历史与现状 5
1.3.2 稀疏表达的研究历史与现状 7
1.3.3 基于SCA 盲源分离的研究历史与现状 9
1.3.4 盲源分离的应用 11
1.4 本书主要内容 14
参考文献 15
第2章 基本理论 25
2.1 引言 25
2.2 独立成分分析 26
2.3 非负矩阵分解 28
2.3.1 学习过程 29
2.3.2 学习目标 31
2.3.3 稀疏规则 34
2.4 非负性张量因子分解 34
2.4.1 Tucker 分解 36
2.4.2 CP 分解 37
2.5 稀疏成分分析SCA 38
2.5.1 从ICA 到SCA 38
2.5.2 稀疏成分分析矩阵稀疏度定义 38
2.5.3 SCA 算法可以完全重构源信号的两个条件 39
2.6 基于SCA 的盲源分离基础算法 39
2.6.1 基于几何稀疏特征的盲源分离算法 40
2.6.2 基于迭代SCA 的盲源分离算法 42
2.7 本章小结 44
参考文献 44
第3章 基于变换域SCA 的盲图像分离 48
3.1 引言 48
3.2 稀疏化变换 48
3.2.1 小波变换 48
3.2.2 曲波变换 49
3.2.3 非下采样轮廓波变换 50
3.3 稀疏度与聚类法估计混合矩阵 51
3.3.1 稀疏度 51
3.3.2 线性聚类法估计混合矩阵 52
3.3.3 面聚类法估计混合矩阵 52
3.4 小波变换的线性不变性 53
3.5 基于变换域SCA 的盲图像分离算法 55
3.6 实验结果和分析 55
3.7 本章小结 59
参考文献 60
第4章 抗加性高斯白噪声的盲图像分离 61
4.1 引言 61
4.2 含加性噪声的盲源分离模型 61
4.3 基于SCA 的盲图像分离算法的抗加性噪声性能 62
4.4 抗加性高斯白噪声的盲图像分离算法 63
4.4.1 基于稀疏表达的图像降噪算法 64
4.4.2 盲图像分离算法的实施 65
4.5 实验结果与分析 67
4.5.1 降噪算法性能测试与分析 67
4.5.2 抗加性高斯白噪声的盲图像分离测试与分析 68
4.6 本章小结 70
参考文献 70
第5章 抗混合噪声的盲图像源分离 72
5.1 引言 72
5.2 盲源分离模型分析 72
5.3 基于SCA 的盲源分离算法分析 73
5.3.1 小波域的SCA 盲源分离算法 73
5.3.2 噪声参与混合的盲图像源分离测试 73
5.4 基于反馈机制的盲图像源分离算法 75
5.4.1 基本思想 75
5.4.2 算法流程 76
5.5 实验结果和分析 77
5.5.1 抗混合高斯白噪声的性能测试 77
5.5.2 复杂混合图像分离实验 79
5.5.3 抗斑点噪声的性能测试 80
5.5.4 遥感影像的分离实验 81
5.6 本章小结 83
参考文献 83
第6章 高效的盲图像分离 85
6.1 引言 85
6.2 基本原理 85
6.2.1 线性瞬时混合模型 85
6.2.2 单源点的相关问题 86
6.3 基于Haar 小波域SSPs 筛选的混合矩阵估计算法 87
6.3.1 Haar 小波域SSPs 筛选分析 87
6.3.2 SSPs 筛选算法 89
6.3.3 混合矩阵的估计 89
6.4 实验结果和分析 89
6.4.1 不同图像组合测试 89
6.4.2 不同小波分量单源点筛选 91
6.4.3 遥感图像测试 92
6.4.4 潜变量个数估计 93
6.5 本章小结 94
参考文献 94
附录 95
第7章 基于稀疏盲图像分离的遥感影像融合 97
7.1 引言 97
7.2 遥感影像融合研究现状 97
7.3 基于抗混合噪声盲图像分离算法的遥感影像融合 99
7.3.1 遥感成像与盲源分离相关分析 99
7.3.2 融合规则 99
7.3.3 融合方法 100
7.4 实验结果和分析 101
7.4.1 采用的融合评价指标 102
7.4.2 多光谱影像与全色影像融合 103
7.4.3 多光谱影像与SAR 影像融合 104
7.4.4 不同极化方式的SAR 影像融合 106
7.5 本章小结 107
参考文献 107
第8章 基于形态成分分析的盲图像分离与应用 108
8.1 引言 108
8.2 图像中形态成分分析理论 108
8.2.1 MCA 理论与实现 108
8.2.2 基于MCA 的图像分解实例 111
8.3 基于GMCA 的盲图像分离 112
8.3.1 GMCA 理论 113
8.3.2 GMCA 实验结果与分析 115
8.4 基于多尺度形态成分分析的遥感图像融合 122
8.4.1 图像的多尺度稀疏分解 123
8.4.2 基于多尺度稀疏分解的遥感图像融合 125
8.4.3 融合实验结果与分析 127
8.5 本章小结 133
参考文献 134
第9章 基于深度学习的盲源分离 137
9.1 引言 137
9.2 深度学习基础介绍 137
9.2.1 深层神经网络 137
9.2.2 递归神经网络 142
9.3 基于深度学习的单声道盲源分离 147
9.3.1 监督回归分离 147
9.3.2 监督回归中的掩模与训练准则 150
9.3.3 标签排列问题 151
9.3.4 深度聚类 151
9.3.5 深度吸引网络 152
9.3.6 置换不变性的训练方法 155
9.4 多说话人语音识别 157
9.5 多讲者说话人识别 159
9.5.1 基于深度学习技术的SID 159
9.5.2 基于生成对抗性模型的盲图像分离方法 162
9.6 本章小结 165
参考文献 165
第1章 绪论 1
1.1 引言 1
1.2 盲源分离系统分类 1
1.2.1 多通道源分离 1
1.2.2 单通道源分离 3
1.2.3 混响源分离 4
1.3 盲源分离的研究历史、现状与应用 5
1.3.1 经典盲源分离的研究历史与现状 5
1.3.2 稀疏表达的研究历史与现状 7
1.3.3 基于SCA 盲源分离的研究历史与现状 9
1.3.4 盲源分离的应用 11
1.4 本书主要内容 14
参考文献 15
第2章 基本理论 25
2.1 引言 25
2.2 独立成分分析 26
2.3 非负矩阵分解 28
2.3.1 学习过程 29
2.3.2 学习目标 31
2.3.3 稀疏规则 34
2.4 非负性张量因子分解 34
2.4.1 Tucker 分解 36
2.4.2 CP 分解 37
2.5 稀疏成分分析SCA 38
2.5.1 从ICA 到SCA 38
2.5.2 稀疏成分分析矩阵稀疏度定义 38
2.5.3 SCA 算法可以完全重构源信号的两个条件 39
2.6 基于SCA 的盲源分离基础算法 39
2.6.1 基于几何稀疏特征的盲源分离算法 40
2.6.2 基于迭代SCA 的盲源分离算法 42
2.7 本章小结 44
参考文献 44
第3章 基于变换域SCA 的盲图像分离 48
3.1 引言 48
3.2 稀疏化变换 48
3.2.1 小波变换 48
3.2.2 曲波变换 49
3.2.3 非下采样轮廓波变换 50
3.3 稀疏度与聚类法估计混合矩阵 51
3.3.1 稀疏度 51
3.3.2 线性聚类法估计混合矩阵 52
3.3.3 面聚类法估计混合矩阵 52
3.4 小波变换的线性不变性 53
3.5 基于变换域SCA 的盲图像分离算法 55
3.6 实验结果和分析 55
3.7 本章小结 59
参考文献 60
第4章 抗加性高斯白噪声的盲图像分离 61
4.1 引言 61
4.2 含加性噪声的盲源分离模型 61
4.3 基于SCA 的盲图像分离算法的抗加性噪声性能 62
4.4 抗加性高斯白噪声的盲图像分离算法 63
4.4.1 基于稀疏表达的图像降噪算法 64
4.4.2 盲图像分离算法的实施 65
4.5 实验结果与分析 67
4.5.1 降噪算法性能测试与分析 67
4.5.2 抗加性高斯白噪声的盲图像分离测试与分析 68
4.6 本章小结 70
参考文献 70
第5章 抗混合噪声的盲图像源分离 72
5.1 引言 72
5.2 盲源分离模型分析 72
5.3 基于SCA 的盲源分离算法分析 73
5.3.1 小波域的SCA 盲源分离算法 73
5.3.2 噪声参与混合的盲图像源分离测试 73
5.4 基于反馈机制的盲图像源分离算法 75
5.4.1 基本思想 75
5.4.2 算法流程 76
5.5 实验结果和分析 77
5.5.1 抗混合高斯白噪声的性能测试 77
5.5.2 复杂混合图像分离实验 79
5.5.3 抗斑点噪声的性能测试 80
5.5.4 遥感影像的分离实验 81
5.6 本章小结 83
参考文献 83
第6章 高效的盲图像分离 85
6.1 引言 85
6.2 基本原理 85
6.2.1 线性瞬时混合模型 85
6.2.2 单源点的相关问题 86
6.3 基于Haar 小波域SSPs 筛选的混合矩阵估计算法 87
6.3.1 Haar 小波域SSPs 筛选分析 87
6.3.2 SSPs 筛选算法 89
6.3.3 混合矩阵的估计 89
6.4 实验结果和分析 89
6.4.1 不同图像组合测试 89
6.4.2 不同小波分量单源点筛选 91
6.4.3 遥感图像测试 92
6.4.4 潜变量个数估计 93
6.5 本章小结 94
参考文献 94
附录 95
第7章 基于稀疏盲图像分离的遥感影像融合 97
7.1 引言 97
7.2 遥感影像融合研究现状 97
7.3 基于抗混合噪声盲图像分离算法的遥感影像融合 99
7.3.1 遥感成像与盲源分离相关分析 99
7.3.2 融合规则 99
7.3.3 融合方法 100
7.4 实验结果和分析 101
7.4.1 采用的融合评价指标 102
7.4.2 多光谱影像与全色影像融合 103
7.4.3 多光谱影像与SAR 影像融合 104
7.4.4 不同极化方式的SAR 影像融合 106
7.5 本章小结 107
参考文献 107
第8章 基于形态成分分析的盲图像分离与应用 108
8.1 引言 108
8.2 图像中形态成分分析理论 108
8.2.1 MCA 理论与实现 108
8.2.2 基于MCA 的图像分解实例 111
8.3 基于GMCA 的盲图像分离 112
8.3.1 GMCA 理论 113
8.3.2 GMCA 实验结果与分析 115
8.4 基于多尺度形态成分分析的遥感图像融合 122
8.4.1 图像的多尺度稀疏分解 123
8.4.2 基于多尺度稀疏分解的遥感图像融合 125
8.4.3 融合实验结果与分析 127
8.5 本章小结 133
参考文献 134
第9章 基于深度学习的盲源分离 137
9.1 引言 137
9.2 深度学习基础介绍 137
9.2.1 深层神经网络 137
9.2.2 递归神经网络 142
9.3 基于深度学习的单声道盲源分离 147
9.3.1 监督回归分离 147
9.3.2 监督回归中的掩模与训练准则 150
9.3.3 标签排列问题 151
9.3.4 深度聚类 151
9.3.5 深度吸引网络 152
9.3.6 置换不变性的训练方法 155
9.4 多说话人语音识别 157
9.5 多讲者说话人识别 159
9.5.1 基于深度学习技术的SID 159
9.5.2 基于生成对抗性模型的盲图像分离方法 162
9.6 本章小结 165
参考文献 165
展开全部
书友推荐
- >
诗经-先民的歌唱
诗经-先民的歌唱
¥18.7¥39.8 - >
龙榆生:词曲概论/大家小书
龙榆生:词曲概论/大家小书
¥7.7¥24.0 - >
姑妈的宝刀
姑妈的宝刀
¥9.0¥30.0 - >
二体千字文
二体千字文
¥21.6¥40.0 - >
回忆爱玛侬
回忆爱玛侬
¥9.8¥32.8 - >
名家带你读鲁迅:朝花夕拾
名家带你读鲁迅:朝花夕拾
¥10.5¥21.0 - >
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
¥9.7¥14.0 - >
月亮虎
月亮虎
¥20.2¥48.0
本类畅销
-
食品添加剂
¥33.5¥45 -
VB语言程序设计
¥29.9¥39.8 -
C语言程序设计习题与实验指导
¥9.1¥18 -
地下建筑结构-(第三版)-(赠课件)
¥49.4¥55 -
模具制图
¥37.8¥49 -
工程机械结构认知
¥10.5¥22