-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
深度学习:卷积神经网络算法原理与应用/王改华/普通高等教育新工科人才培养规划教材
¥18.9¥29.0西南岩溶地下河系统水流运动数值模型及枯季流量衰减特征
¥23.2¥28.0名著名译丛书:小妇人(精装版)
¥19.6¥28.0创新工作室的创建与管理-激发企业内生动力和创造活力
¥33.7¥46.8塔里木灌区气候变化对膜下滴灌棉花种植的影响及其适应措施
¥22.5¥30.0
深度学习-基于MATLAB的设计实例 版权信息
- ISBN:9787512426665
- 条形码:9787512426665 ; 978-7-5124-2666-5
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
深度学习-基于MATLAB的设计实例 本书特色
深度学习如此流行,以至于关于它的资料随处可见。但往往是理论连篇,并不适合开发者具体使用,本书内容丰富实用、原理直白易懂、示例详细直观、代码详实细致,目的就是希望帮助开发者在学习这个人工智能的过程中不那么痛苦,同时也希望用本书中具体的开发实例讲解能够帮助开发者避免困惑。本书主要考虑了两类读者。*类是准备系统地学习深度学习以进一步研究和开发的读者,书中的示例代码将更加有助于进一步理解本书所讲的内容。第二类是想比从杂志或报纸上获得更深入的深度学习信息,但不必进行实际研究的读者。书中概念和示例结果,也有助于您理解深度学习的大多数重要技术。本书共包含6章内容,可以分为3个主题。书中例子均用MATLAB编写而成。
第1个主题是机器学习。深度学习起源于机器学习,这意味着如果想要理解深度学习的本质,就必须在某种程度上知道机器学习背后的理念。第1章从机器学习与深度学习的关系开始讲起,随后是解决问题的策略和机器学习的基本局限性。深度学习如此流行,以至于关于它的资料随处可见。但往往是理论连篇,并不适合开发者具体使用,本书内容丰富实用、原理直白易懂、示例详细直观、代码详实细致,目的就是希望帮助开发者在学习这个人工智能的过程中不那么痛苦,同时也希望用本书中具体的开发实例讲解能够帮助开发者避免困惑。本书主要考虑了两类读者。*类是准备系统地学习深度学习以进一步研究和开发的读者,书中的示例代码将更加有助于进一步理解本书所讲的内容。第二类是想比从杂志或报纸上获得更深入的深度学习信息,但不必进行实际研究的读者。书中概念和示例结果,也有助于您理解深度学习的大多数重要技术。本书共包含6章内容,可以分为3个主题。书中例子均用MATLAB编写而成。
第1个主题是机器学习。深度学习起源于机器学习,这意味着如果想要理解深度学习的本质,就必须在某种程度上知道机器学习背后的理念。第1章从机器学习与深度学习的关系开始讲起,随后是解决问题的策略和机器学习的基本局限性。
第2个主题是人工神经网络这是第2~4章的重点内容。由于深度学习就是采用一种神经网络的机器学习,所以不能将神经网络与深度学习分开。第2章从神经网络的基本概念讲起:它的工作原理、体系结构和学习规则,也讲到了神经网络由简单的单层结构演化为复杂的多层结构的原因。第3章介绍了反向传播算法,它是神经网络中一种重要和典型的学习规则,深度学习也使用这种算法。本章解释了代价函数和学习规则是如何联系起来的,哪一种代价函数在深度学习中被广泛使用。第4章介绍了将神经网络应用到分类问题中的方法。其中单列一节专门讲分类,因为它是目前*流行的一种深度学习应用。例如图像识别是一个分类问题,也是深度学习的一种主要应用。
第3个主题是深度学习,也是本书的重点,将在第5章和第6章中讲解。第5章介绍了使深度学习能够产生卓越性能的驱动因素。第6章讲解了卷积神经网络,本章首先介绍了卷积神经网络的基本概念和结构,并与前面的图像识别算法进行了比较;随后解释了卷积层和池化层的作用和运算方法,它们是卷积神经网络的重要组成部分。第6章也包含了一个用卷积神经网络进行数字图像识别的例子,并研究了图像通过各层的演化过程。
深度学习-基于MATLAB的设计实例 内容简介
深度学习如此流行,以至于关于它的资料随处可见。但往往是理论连篇,并不适合开发者具体使用,本书内容丰富实用、原理直白易懂、示例详细直观、代码详实细致,目的就是希望帮助开发者在学习这个人工智能的过程中不那么痛苦,同时也希望用本书中具体的开发实例讲解能够帮助开发者避免困惑。本书主要考虑了两类读者。**类是准备系统地学习深度学习以进一步研究和开发的读者,书中的示例代码将更加有助于进一步理解本书所讲的内容。第二类是想比从杂志或报纸上获得更深入的深度学习信息,但不必进行实际研究的读者。书中概念和示例结果,也有助于您理解深度学习的大多数重要技术。 本书共包含6章内容,可以分为3个主题。书中例子均用MATLAB编写而成。 第1个主题是机器学习。深度学习起源于机器学习,这意味着如果想要理解深度学习的本质,就必须在某种程度上知道机器学习背后的理念。第1章从机器学习与深度学习的关系开始讲起,随后是解决问题的策略和机器学习的基本局限性。 第2个主题是人工神经网络这是第2~4章的重点内容。由于深度学习就是采用一种神经网络的机器学习,所以不能将神经网络与深度学习分开。第2章从神经网络的基本概念讲起:它的工作原理、体系结构和学习规则,也讲到了神经网络由简单的单层结构演化为复杂的多层结构的原因。第3章介绍了反向传播算法,它是神经网络中一种重要和典型的学习规则,深度学习也使用这种算法。本章解释了代价函数和学习规则是如何联系起来的,哪一种代价函数在深度学习中被广泛使用。第4章介绍了将神经网络应用到分类问题中的方法。其中单列一节专门讲分类,因为它是目前*流行的一种深度学习应用。例如图像识别是一个分类问题,也是深度学习的一种主要应用。 第3个主题是深度学习,也是本书的重点,将在第5章和第6章中讲解。第5章介绍了使深度学习能够产生卓越性能的驱动因素。第6章讲解了卷积神经网络,本章首先介绍了卷积神经网络的基本概念和结构,并与前面的图像识别算法进行了比较;随后解释了卷积层和池化层的作用和运算方法,它们是卷积神经网络的重要组成部分。第6章也包含了一个用卷积神经网络进行数字图像识别的例子,并研究了图像通过各层的演化过程。
深度学习-基于MATLAB的设计实例 目录
深度学习-基于MATLAB的设计实例 作者简介
作者简介: Phil Kim,博士,从事无人驾驶飞机自主飞行算法和机载软件的开发和研制工作。同时,他作为一名经验丰富的MATLAB程序员,一直致力于使用MATLAB进行人工智能、深度学习的大数据集绘制和分析算法的研究,先后在美国出版了MATLAB Deep Learning: with Machine Learning, Neural Networks and Artificial Intelligence和Deep Learning for Beginners: with MATLAB Examples 等书籍,在人工智能和MATLAB领域享有较高声誉。 译者简介: 邹伟,副研究员,北京睿客邦科技有限公司CEO,并成立了中科院邹博人工智能研究中心(杭州站)等产研机构;研究方向为机器学习、数据挖掘、计算几何等领域,研究成果已成功应用于大型气象设备的图像与文本挖掘、金融产品AI化、股票交易与预测、高速公路流量预测和分析、传统农资产品价格预测和决策等领域;获得发明专利4项,著作权3个。
- >
史学评论
史学评论
¥23.5¥42.0 - >
经典常谈
经典常谈
¥12.7¥39.8 - >
诗经-先民的歌唱
诗经-先民的歌唱
¥13.5¥39.8 - >
我从未如此眷恋人间
我从未如此眷恋人间
¥32.4¥49.8 - >
月亮与六便士
月亮与六便士
¥15.1¥42.0 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
伯纳黛特,你要去哪(2021新版)
伯纳黛特,你要去哪(2021新版)
¥15.9¥49.8 - >
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
¥9.9¥23.0
-
网络工程师教程(第2版)
¥69.3¥99 -
Python 数据分析基础
¥41¥69 -
Python 3.5从零开始学
¥26.4¥59 -
虚拟化与容器技术
¥49.9¥69.8 -
UG NX 11.0工程图教程-(含1DVD)
¥30.4¥59.9 -
程序设计语言编译原理(第3版)
¥25.4¥39