欢迎光临中图网 请 | 注册
有书有礼贺新年|每满100减50
>
关于“潘风文”检索到   共8种现货商品
出版社:
确定 取消
售价:
---
  • 人工智能开发丛书人工智能开发语言:PYTHON

    ¥52.3(6.7折)定价:¥78.0

    本书以浅显易懂的语言对Python进行了全面系统的介绍,采用范例加图解的形式讲解,读者可轻松阅读。全书主要内容包括Python语言的基础语法、数据类型、运算符、函数、类、对象以及常用的标准功能模块,很后以实例的形式介绍了开发机器学习和人工智能应用所需的知识及相应的功能模块。 本书适合有志于从事机器学习、人工智能技术开发的人员或爱好者,也可作为相关专业的教材...

  • PMML建模标准语言基础

    ¥70.3(7.9折)定价:¥89.0

    一本书搞懂PMML-----可预测模型标记语言,轻松构建数据挖掘模型...

  • Scikit-learn机器学习详解:上

    ¥67.3(6.8折)定价:¥99.0

    本书主要内容包括机器学习介绍,NumPy、Pandas、SciPy库、Matplotlib(可视化)四个基础模块,Scikit-learn算法、模型、拟合、过拟合、欠拟合、模型性能度量指标、数据标准化、非线性转换、离散化,以及特征抽取和降维的各种方法,包括特征哈希、文本特征抽取、特征聚合等。全书通过实用范例和图解形式讲解,选材典型,案例丰富,适合从事大数据、数据挖掘、机器学习等人工智能领域开发的各类人员...

  • 数据挖掘与机器学习:PMML建模:上

    ¥66.3(6.7折)定价:¥99.0

    本书结合实际例子详细介绍了数据挖掘和机器学习领域关联规则模型、朴素贝叶斯模型、贝叶斯网络模型、基线模型、聚类模型、通用回归模型、回归模型、高斯过程模型以及K*近邻模型九种模型的表达方式及构建知识。读者*好同时结合《PMML建模标准语言基础》一书进行学习,以便融会贯通,灵活运用,更好地把PMML语言应用到自己的项目实践中。本书的读者对象为从事数据挖掘、机器学习、人工智能系统开发的人员以及教师和学生,也可以作为大数据及机器学习爱好者的自学

  • 人工智能开发丛书人工智能开发丛书--数据挖掘与机器学习:PMML建模(下)

    ¥74.3(7.5折)定价:¥99.0

    本书详细描述了PMML规范(Ver4.3)所支持的8种模型:神经网络模型、决策树模型、规则集模型、序列模型、评分卡模型、支持向量机模型、时间序列模型和聚合模型。全书不是简单地介绍PMML语法,而是融合各种挖掘模型基础知识和算法知识,告诉开发者如何融会贯通地掌握、使用PMML语言,不仅能够学习到标准的PMML模型表达方式,而且能学习机器学习模型的丰富知识,从而熟练地把PMML语言应用到自己的项目实践中。 本书可供从事数据挖掘(机器学习)

  • 人工智能开发丛书--Scikit-learn机器学习详解(下)

    潘风文  /  2021-06-01  /  化学工业出版社
    ¥84.5(6.6折)定价:¥128.0

    本书主要内容包括普通最小二乘法回归、岭回归、Lasso回归、弹性网络回归、正交匹配追踪回归、贝叶斯回归、广义线性回归、随机梯度下降回归、被动攻击回归、鲁棒回归、多项式回归、支持向量机回归、核岭回归、最近邻回归、高斯过程回归、决策树、神经网络模型、保序回归、岭分类、逻辑回归分类、随机梯度下降分类、感知机、被动攻击分类、支持向量机分类、最近邻分类、高斯过程分类、朴素贝叶斯模型、决策树分类和神经网络分类、无监督学习、半监督学习等。全书结合具

  • 机器学习高级进阶

    潘风文  /  2023-01-01  /  化学工业出版社
    ¥62.3(7折)定价:¥89.0

    本书是《Scikit-learn机器学习详解》(潘风文编著)的进阶篇,讲解了Sklearn(Scikit-learn)机器学习框架的各种高级应用技术,包括数据集导入工具、集成学习、模型选择和交叉验证、异常检测、管道、 信号分解、模型持久化以及Sklearn系统高级配置。通过本书的学习,读者可快速掌握Sklearn框架的高级知识,迈入人工智能殿堂的大门。 本书适合有志于从事机器学习、人工智能技术开发的人员或爱好者使用,也可作为相关专业的

  • 人工智能开发丛书--PYTHON机器学习集锦

    ¥66.5(7折)定价:¥95.0

    Python是一种面向对象的脚本语言,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。本书是作者长期应用Python进行机器学习开发实践的经验结晶,主要内容包括Python数据读取的技巧,数据探索性分析,数据预处理,特征选择,特征选择的常用技巧,算法模型,sklearn类库,Python中数据可视化的常用方法等。本书具有针对性、系统性、实操性强,原创度高的特点,读者对代码进行简单修改,就可以直

五星书

编辑推荐

中图网
返回顶部