机器学习项目成功交付 版权信息
- ISBN:9787302668589
- 条形码:9787302668589 ; 978-7-302-66858-9
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
机器学习项目成功交付 本书特色
对于机器学习项目来说,我们可能看不到一种人所共知的弊病,甚至没有一个单一的主题。相反,这些项目的失败似乎来自许多不同的方向。尽管这些项目失败的原因各不相同,但其中也有一个共同的原因:领导这些项目的人大都才华横溢、聪明睿智、善于表达、技术精湛,唯独欠缺的就是经验。如果你有幸获得足够的经验来引导一个或十个机器学习项目取得成功,那么不分享这些经验就显得过于吝啬了。机器学习和人工智能是可以用于公益的技术,它们有望帮助应对气候变化、流行疾病和经济困境。也许通过分享如何管理机器学习项目的知识,我可以帮助其他人完成一些实际项目,让世界变得更美好!
机器学习项目成功交付 内容简介
本书详细阐述了与机器学习成功交付相关的基本知识,主要包括项目前期,开始工作,深入研究问题,探索性数据分析、道德和基线评估,使用机器学习技术制作实用模型,测试和选择模型,系统构建和生产,发布项目等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
本书适合作为高等院校计算机及相关专业的教材和教学参考书,也可作为相关开发人员的自学用书和参考手册。
机器学习项目成功交付 目录
第1章 引言:交付机器学项目很困难,让我们做得更好 1
1.1 机器学的定义 2
1.2 机器学很重要 4
1.3 其他机器学方法 8
1.4 理解本书内容 12
1.5 案例研究:The Bike Shop 15
1.6 小结 16
第2章 项目前期:从机会到需求 17
2.1 项目前期待办事项 18
2.2 项目管理基础设施 20
2.3 项目需求 21
2.3.1 投资模式 22
2.3.2 业务需求 23
2.4 数据 28
2.5 与隐私 31
2.6 企业责任、监管和道德考虑 33
2.7 开发架构及流程 37
2.7.1 开发环境 39
2.7.2 生产架构 40
2.8 小结 41
第3章 项目前期:从需求到提案 43
3.1 建立项目假设 43
3.2 创建项目估计 47
3.2.1 时间和力估计 47
3.2.2 机器学项目的团队设计 49
3.2.3 项目风险 55
3.3 售前/项目前期管理 56
3.4 项目前期/售前清单 56
3.5 The Bike Shop预售 58
3.6 有关项目前期的后记 65
3.7 小结 66
第4章 开始工作 67
4.1 Sprint 0待办事项 67
4.2 确定团队设计和资源配置 68
4.3 工作方式 69
4.3.1 流程与结构 69
4.3.2 心跳和沟通方案 71
4.3.3 工具 72
4.3.4 标准和实践 76
4.3.5 文档 78
4.4 基础设施计划 80
4.4.1 系统访问 80
4.4.2 技术基础设施评估 81
4.5 数据故事 81
4.5.1 数据收集动机 84
4.5.2 数据收集机制 84
4.5.3 数据沿袭 85
4.5.4 事件 87
4.6 隐私、和道德计划 87
4.7 项目路线图 88
4.8 Sprint 0清单 89
4.9 The Bike Shop:项目设置 90
4.10 小结 96
第5章 深入研究问题 97
5.1 Sprint 1待办事项 97
5.2 理解数据 98
5.2.1 数据调查 99
5.2.2 调查数值数据 101
5.2.3 调查分类数据 103
5.2.4 调查非结构化数据 104
5.2.5 报告和使用调查结果 106
5.3 业务问题细化、用户体验和应用程序设计 107
5.4 构建数据管道 110
5.4.1 数据融合问题 113
5.4.2 管道丛林 114
5.4.3 数据测试 116
5.5 模型存储库和模型版本控制 117
5.5.1 征、基础模型和训练机制 118
5.5.2 版本控制概述 119
5.6 小结 120
第6章 探索性数据分析、道德和基线评估 121
6.1 探索性数据分析 121
6.1.1 探索性数据分析的目标 122
6.1.2 汇总和描述数据 123
6.1.3 绘图和可视化 125
6.1.4 非结构化数据 129
6.2 道德检查点 133
6.3 基线模型和性能 134
6.4 出现问题时的解决方案 135
6.5 预建模检查表 137
6.6 The Bike Shop:预建模 137
6.6.1 数据调查结束后 138
6.6.2 探索性数据分析实现 141
6.7 小结 144
第7章 使用机器学技术实用模型 145
7.1 Sprint 2待办事项 146
7.2 征工程和数据增强 147
7.2.1 征工程的基础概念 148
7.2.2 创建新征 150
7.2.3 数据增强 152
7.3 模型设计 154
7.3.1 设计的外力 154
7.3.2 总体设计 155
7.3.3 选择组件模型 156
7.3.4 归纳偏差 157
7.3.5 多个不相交模型 161
7.3.6 模型组合 161
7.4 使用机器学技术模型 162
7.4.1 建模过程 163
7.4.2 实验跟踪和模型存储库 164
7.4.3 AutoML和模型搜索 166
7.5 警惕“臭”模型 168
7.6 小结 169
第8章 测试和选择模型 171
8.1 测试和选择模型的原因 171
8.2 测试流程 172
8.2.1 离线测试 173
8.2.2 离线测试环境 175
8.2.3 在线测试 177
8.2.4 现场试验 177
8.2.5 A/B测试 178
8.2.6 多臂老虎机 179
8.2.7 非功能测试 181
8.3 选择模型 182
8.3.1 定量选择 184
8.3.2 通过可比测试进行选择 184
8.3.3 通过多次测试进行选择 185
8.3.4 定性选择指标 187
8.4 建模后检查表 188
8.5 The Bike Shop:Sprint 2 189
8.6 小结 196
第9章 Sprint 3:系统构建和生产 199
9.1 Sprint 3待办事项 199
9.2 机器学实现的类型 201
9.2.1 辅助系统 202
9.2.2 委托系统 205
9.2.3 自治系统 208
9.3 非功能审查 210
9.4 实现生产系统 211
9.4.1 生产数据基础设施 211
9.4.2 模型服务器和推理服务 214
9.4.3 用户接口设计 216
9.5 记录、监控、管理、反馈和文档 219
9.5.1 模型治理 221
9.5.2 文档 222
9.6 发布前测试 223
9.7 道德审查 224
9.8 投入生产 225
9.9 曲人不散 226
9.10 The Bike Shop Sprint 3 227
9.11 小结 230
第10章 发布项目 231
10.1 Sprint Ω待办事项 231
10.2 投入生产并不意味着万事大吉 232
10.2.1 直面问题和厘清责任 232
10.2.2 机器学的技术债务 234
10.2.3 模型漂移 235
10.2.4 再训练 236
10.2.5 紧急情况 237
10.2.6 问题调查 238
10.3 团队项目后评审 238
10.4 改进实践 240
10.5 新技术的采用 241
10.6 案例研究 242
10.7 再见,祝你好运 242
10.8 小结 243
展开全部
机器学习项目成功交付 作者简介
[美]西蒙·汤普森(Simon Thompson),拥有25年的开发人工智能系统的经验(虽然使用的并不都是机器学习技术)。他领导了英国电信(BT)实验室的人工智能研究项目,帮助该公司开拓了大数据技术,并管理了近十年的应用研究实践。其团队交付的项目使用了贝叶斯机器学习、深度网络以及运行良好的早期风格决策树和关联规则挖掘技术,以提供对大型公司的电信网络、客户服务和业务流程的深入见解。