图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
Ordinary differential equations

Ordinary differential equations

出版社:世界图书出版公司出版时间:2024-03-01
开本: 24cm 页数: 334页
本类榜单:自然科学销量榜
中 图 价:¥85.7(7.2折) 定价  ¥119.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Ordinary differential equations 版权信息

  • ISBN:9787519296674
  • 条形码:9787519296674 ; 978-7-5192-9667-4
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

Ordinary differential equations 内容简介

.这本苏联/俄罗斯数学家阿诺德所著的常微分方程讲义独具特色。书中强调常微分方程的定性性质和几何性质及其它们的解,全书有272个几何插图,却没有一个复杂的数学公式。全书分为5章36节。本书是阿诺德的名著,他的许多优秀作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被誉为*优秀的常微分教材。

Ordinary differential equations 目录

Chapter 1. Basic Concepts §1. Phase Spaces 1. Examples of Evolutionary Processes 2. Phase Spaces 3. The Integral Curves of a Direction Field 4. A Differential Equation and its Solutions 5. The Evolutionary Equation with a One-dimensional Phase Space 6. Example: The Equation of Normal Reproduction 7. Example: The Explosion Equation 8. Example: The Logistic Curve 9. Example: Harvest Quotas 10. Example: Harvesting with a Relative Quota, 11. Equations with a Multidimensional Phase Space 12. Example: The Differential Equation of a Predator-Prey System 13. Example: A Free Particle on a Line 14. Example: Free Fall 15. Example: Small Oscillations 16. Example: The Mathematical Pendulum 17. Example: The Inverted Pendulum 18. Example: Small Oscillations of a Spherical Pendulum §2. Vector Fields on the Line 1. Existence and Uniqueness of Solutions 2. A Counterexample : 3. Proof of Uniqueness 4. Direct Products 5. Examples of Direct Products 6. Equations with Separable Variables 7. An Example: The Lotka-Volterra Model §3. Linear Equations 1. Homogeneous Linear Equations 2. First-order Homogeneous Linear Equations with Periodic Coefficients 3. Inhomogeneous Linear Equations 4. The Influence Function and b-shaped Inhomogeneities 5. Inhomogeneous Linear Equations with Periodic Coefficients §4. Phase Flows 1. The Action of a Group on a Set 2. One-parameter Transformation Groups 3. One-parameter Diffeomorphism Groups 4. The Phase Velocity Vector Field §5. The Action of Diffeomorphlsms on Vector Fields and Direction Fields 1. The Action of Smooth Mappings on Vectors 2. The Action of Diffeomorphisms on Vector Fields 3. Change of Variables in an Equation 4. The Action of a Diffeomorphism on a Direction Field 5. The Action of a Diffeomorphism on a Phase Flow §6. Symmetries 1. Symmetry Groups 2. Application of a One-parameter Symmetry Group to Integrate an Equation 3. Homogeneous Equations 4. Quasi-homogeneous Equations 5. Similarity and Dimensional Considerations 6. Methods of Integrating Differential Equations Chapter 2. Basic Theorems §7. Rectification Theorems 1. Rectification of a Direction Field 2. Existence and Uniqueness Theorems 3. Theorems on Continuous and Differentiable Dependence of the Solutions on the Initial Condition 4. Transformation over the Time Interval from to to t 5. Theorems on Continuous and Differentiable Dependence on a Parameter 6. Extension Theorems 7. Rectification of a Vector Field §8. Applications to Equations of Higher Order than First 1. The Equivalence of an Equation of Order n and a System of n First-order Equations 2. Existence and Uniqueness Theorems 3. Differentiability and Extension Theorems …… Chapter 3. Linear Systems Chapter 4. Proofs of the Main Theorems Chapter 5. Differential Equations on Manifolds Examination Topics Sample Examination Problems Subject Index
展开全部

Ordinary differential equations 作者简介

弗拉基米尔·阿诺德(Vladimir Igorevich Arnold,1937~2010),20世纪最伟大的数学家之一,动力系统和古典力学等方面的大师。俄罗斯科学院院士,1982年获首届Crafoord奖,2001年获Wolf奖,2008年获Shaw奖。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服