生活不是掷骰子:理性决策的贝叶斯思维 版权信息
- ISBN:9787121470684
- 条形码:9787121470684 ; 978-7-121-47068-4
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 所属分类:>
生活不是掷骰子:理性决策的贝叶斯思维 本书特色
贝叶斯是当前人工智能的重要基础之一。目前市面上有关贝叶斯的书籍,大多是从工科角度去阐述贝叶斯定理的推导和应用,因此运用了非常多的烦琐公式、定理和推导。而贝叶斯应用却是非常广泛的,绝不仅仅是机器学习的一个工具,还可以上升到一套科学思维方法论。本书主要以贝叶斯为核心,讲授了一些重要的思维方式,包括概率思维、*大似然估计、贝叶斯估计,以及用贝叶斯估计来破除某些思维的误区。本书由浅入深地介绍了贝叶斯的核心思想,并且给出了如何用贝叶斯来指导人们日常生活思维的案例。
生活不是掷骰子:理性决策的贝叶斯思维 内容简介
生活离不开数学。本书通过日常生活中的丰富案例,介绍了如何用数学思维,特别是运用贝叶斯定理来分析和解决看似简单但内涵深刻的生活问题。例如,《两小儿辩日》的逻辑错误,《卖拐》中使用的套路,成功学、阴谋论、星座学为什么都不靠谱,如何科学地扑点球,余则成是如何破解录音带危机的,索罗斯做空英镑的数学原理,等等。这些深入浅出、妙趣横生的案例,可以帮助我们穿透事物的表象,洞察事物的真相。通过本书,我们还能认识到,统计数据是常识的基础,并在此之上建立正确的世界观,养成批判性思维和成长型思维,不断迭代升级认知,从而客观而睿智地看世界、机智而高效地做决策。
生活不是掷骰子:理性决策的贝叶斯思维 目录
目录
第1章 无处不在的推理 001
1.1 福尔摩斯和程序员小王 002
1.1.1 从两道推理题说起 002
1.1.2 福尔摩斯的精彩推理 003
1.1.3 程序员小王的日记 005
1.1.4 信息推断之难 007
1.2 《智子疑邻》给我们的启示 009
1.2.1 黑白思维 009
1.2.2 概率思维 011
1.3 把解释得*好的,当作*有可能的 013
1.3.1 条件概率 014
1.3.2 *大似然估计 014
1.3.3 谁打中了十环——*大似然估计的例子 016
1.3.4 是程序员还是股票经纪人——*大似然估计的其他例子 018
1.4 你会患上罕见的血液病吗——*大似然估计的问题 023
1.4.1 不同原因发生的概率不同 024
1.4.2 血液病检查 028
1.4.3 工作机会 030
第2 章 贝叶斯定理 033
2.1 贝叶斯定理及其数学逻辑 034
2.1.1 贝叶斯定理的问世 034
2.1.2 信息推断的数学抽象 035
2.1.3 *大似然估计的数学抽象 036
2.1.4 如何用贝叶斯定理做信息推断 037
2.1.5 贝叶斯定理给我们的启发 038
2.1.6 用贝叶斯定理来做推断的三个例子 040
2.2 贝叶斯定理与奥卡姆剃刀 045
2.2.1 奥卡姆剃刀 045
2.2.2 奥卡姆剃刀的贝叶斯解释 052
2.3 贝叶斯定理与汉隆剃刀 053
2.3.1 汉隆剃刀 053
2.3.2 汉隆剃刀的贝叶斯解释 055
2.4 不要遗漏可能的原因 056
2.4.1 《六座拿破仑半身像》 057
2.4.2 一对恋人的日记 058
2.4.3 何不食肉糜 059
第3 章 贝叶斯定理的要素一:先验概率 061
3.1 莱曼手中的小纸条——先验概率的重要性 062
3.1.1 如何科学地扑点球 062
3.1.2 神秘的小纸条与马丁内斯的建议 064
3.1.3 两个同学的不同遭遇 066
3.2 不识庐山真面目,只缘身在此山中— —贝叶斯与外部视角 068
3.2.1 内部视角与外部视角 068
3.2.2 内部视角的问题 070
3.2.3 用外部视角需要注意的问题 072
3.3 商家的套路——贝叶斯定理与锚定效应 075
3.4 “看历史”和“找圈子” 079
3.4.1 “看历史”与“找圈子”的含义 080
3.4.2 “找圈子”的例子 081
3.4.3 找先验概率的错误一:看错历史,找错圈子 083
3.4.4 找先验概率的错误二:个人经验带来的概率高估 084
3.4.5 对先验概率进行调整时容易出现的问题 085
第4 章 贝叶斯定理的要素二:观测 087
4.1 什么样的证据可以扭转你的认知 088
4.1.1 信息量大的观测 088
4.1.2 信息量小的观测 098
4.2 明星的人设、两小儿辩日与电梯里的女孩 101
4.2.1 怎样改变一个明星的人设 101
4.2.2 辩日的两小儿所犯的错误 102
4.2.3 电梯里的女孩对我笑了 105
4.3 星座学与《卖拐》背后的数学原理 108
4.3.1 巴纳姆效应 109
4.3.2 星座学的贝叶斯解释 110
4.3.3 小品《卖拐》的贝叶斯解释 111
4.4 为什么“大师”不可信 114
4.4.1 为什么排他性证据很难找到 114
4.4.2 解释之易与排他之难 115
4.5 余则成破解录音带危机——改变后验概率的另一种方法 118
4.5.1 M&Ms 巧克力豆条款 118
4.5.2 录音带事件 122
第5 章 多个观测下的贝叶斯 127
5.1 买香草味的冰激凌,车子打不着火——谈谈条件独立 128
5.1.1 条件独立的定义 129
5.1.2 看似相关,实则条件独立 130
5.1.3 看似独立,实则条件独立 134
5.2 如何利用多个观测进行推断 137
5.2.1 多个观测下的贝叶斯定理 137
5.2.2 晴天的概率有多大 138
5.2.3 水烧开了吗 140
5.3 不要遗漏重要的观测 142
5.3.1 避免有偏采样 143
5.3.2 收集证据的技巧 148
第6 章 在线贝叶斯估计 155
6.1 当观测依次到来时应该怎么办——在线贝叶斯估计的原理 156
6.1.1 在线贝叶斯估计 156
6.1.2 在线贝叶斯公式 158
6.1.3 在线贝叶斯估计给我们的启发 160
6.2 在线算法 162
6.2.1 在线算法与离线算法 163
6.2.2 求均值 164
6.2.3 在线奇异值分解 165
6.3 两种思维模式:“步步为营”与“精益求精” 168
6.3.1 项目管理中的敏捷模型 169
6.3.2 *简可行产品 171
6.3.3 用精益求精的方法来写论文 173
6.4 《狼来了》给我们的启发 175
6.4.1 寓言《狼来了》的贝叶斯解释 176
6.4.2 在线贝叶斯估计给我们的启发 177
第7 章 分层描述法 181
7.1 多个观测下贝叶斯的分组法 182
7.1.1 多个观测下运用贝叶斯的问题 182
7.1.2 解决问题的基本思路 184
7.1.3 分组的原则 185
7.2 两个观测下哪一个应放入先验概率 188
7.2.1 飞机发生剧烈颠簸 188
7.2.2 两棵枣树 190
7.3 如何在一个月内进账10 亿美元 192
7.3.1 事件背景 192
7.3.2 证据与分析 193
7.3.3 排他性证据的出现 195
7.4 样本太少怎么办——分组法面临的困难与解决方法 197
7.4.1 他能找到工作吗 197
7.4.2 如何找到统计数据 199
7.4.3 另一种思路:提高观测的颗粒度 200
7.5 分层描述法 203
7.5.1 分层描述法的四个步骤 203
7.5.2 用分层描述法分析“他能找到工作吗” 205
7.5.3 飞机还安全吗 206
7.5.4 我家孩子能考上好大学吗 207
7.5.5 应该做这个心脏手术吗 209
7.5.6 运用分层描述法容易犯的错误 210
7.5.7 这家人养狗的概率是多少 212
第8 章 法庭上的贝叶斯:克拉克的审判 215
8.1 **个错误:错误的独立假设 217
8.2 第二个错误:将似然概率当作后验概率 218
8.3 第三个错误:偏移的圈子 220
8.4 克拉克有罪的概率到底是多少 225
第9 章 医学中的贝叶斯 229
9.1 医生诊病和贝叶斯定理 230
9.1.1 医生诊病的总体思路 230
9.1.2 一个典型的诊断过程 232
9.2 医生诊病给我们的启发 238
9.2.1 启发一:将“多选一”变成“二选一” 239
9.2.2 启发二:收集有助于估计后验概率的信息 240
9.2.3 启发三:证据的性价比和收集顺序 242
9.2.4 启发四:检查多多益善吗? 245
第10 章 网络时代的贝叶斯 251
10.1 网络谣言预警器:贝叶斯带来的一个启发 252
10.1.1 贝叶斯告诉我们的一个道理 252
10.1.2 找到实锤之难与网文常用的套路 255
10.2 常见的三种证据错误 257
10.2.1 证据不可信 257
10.2.2 证据不量化 258
10.2.3 用个例代替统计 259
10.3 被媒体扭曲的先验概率 262
10.3.1 互联网时代媒体信息的特点 262
10.3.2 报道小概率事件 264
10.3.3 裁剪证据 266
10.3.4 信息茧房 267
10.4 用贝叶斯估计来剖析阴谋论 270
10.4.1 什么是阴谋论 270
10.4.2 为什么人们容易相信阴谋论 273
10.4.3 阴谋论的错误之一:未考虑先验概率 274
10.4.4 阴谋论的错误之二:未考虑其他原因 277
10.4.5 阴谋论的错误之三:观测有问题 278
总结和寄语 281
附 录 285
附录A 图解法和贝叶斯定理 286
附录B 公式(5-2)的数学推导 288
附录C 在线贝叶斯公式的推导 289
附录D 《狼来了》的数学推导 290
附录E 公式(7-4)的推导 291
附录F 三种情况下后验概率和先验概率接近的证明 292
展开全部
生活不是掷骰子:理性决策的贝叶斯思维 相关资料
(名人推荐)
贝叶斯定理不仅仅是一个数学定理,也不仅仅是“一种”观察世界的方法——它是我们观察世界、理解世界、从世界中获得知识和作出判断最重要的方法。这个思想非常简单:面对不确定的局面,你只能指望一个概率式的判断,但是这个判断的精确性可以随着新信息的输入而提高。那么哪些信息重要,哪些信息不重要呢?听风就是雨不对,对新信息置若罔闻也不对,怎样才能既机警又有定力呢?刘雪峰老师的这本书通俗易懂地向我们展示了贝叶斯定理的各种用法,读来十分过瘾……你会惊叹于世间那么多智慧,竟然基于同一个原理。
——著名科普作家 万维钢
如何思考好像是一个简单的问题,但真正会思考的人其实不多,这也是为什么会有这么多关于思考的书。很多书虽然有料,却很难读。雪峰的这本书用大家日常生活和工作中的例子,借助贝叶斯公式教我们如何通过科学思维找到答案,易读易懂。再说,一本书好不好,不在于仅仅给出答案,而在于是否教给我们思考和解决问题的途径与方法。相信雪峰是希望通过这本书让读者能学会深入思考,将书中的推理方法,除了应用,更能提升,推及到其他逻辑思考的层面。
——欧洲人文和自然科学院院士、香港理工大学研究生院院长 曹建农
这是我读过的最深入浅出讲解概率思维的好书,老少咸宜。本书引导每一个人在今天复杂的社会当中做出科学决策,不偏狭、不盲从。同时,本书具有非常强的人文价值。
——少年商学院创始人、《世界是我们的课堂》作者 张华
本书作者刘雪峰老师,以“解剖麻雀”的方式,从贝叶斯公式入手,结合丰富生动的案例,见微知著地展现了如何通过证据判断观点,通过先验概率解释因果。本书可以帮助读者拓展视野,建立批判型和成长型思维,基于贝叶斯思想建立正确的世界观。
——武汉大学信息管理学院教授、博士生导师 洪亮
在现代社会,我们只有具备了批判性思维,才能以科学精神,洞察事物的真相,看清世界的本来面目。那么如何才能培养自己的批判性思维呢?刘雪峰老师在本书中通过大量的生活案例,引导我们运用贝叶斯定理这个工具分析问题、解决问题,以帮助我们作出尽可能正确的决策,并养成批判性思维的思维习惯。这本书非常有借鉴意义,值得细读。
——北京交通大学数理学院院长、教授、博士生导师 于永光
这本书仅用一个概念“贝叶斯定理”,就系统地构建起一个人的批判性思维能力,甚至赋能那看似源于天赋的科学直觉。它以观测之眼,打破无序无测的骰令规则,以理性的锐感美育千般人生。品阅中思酌,它就像是把灵锁,你我都将作那被敏化心觉的启匙。
——北京工商大学数学与统计学院教授、博士生导师 周艳杰
生活不是掷骰子:理性决策的贝叶斯思维 作者简介
刘雪峰
现任北京航空航天大学计算机学院副教授,博士生导师。2008年在英国布里斯托大学获博士学位,2014年曾担任华中科技大学副教授。研究方向为人工智能、物联网、分布式计算,先后主持多项国家自然科学基金面上项目和横向课题,在国内外期刊和国际会议上发表学术论文100余篇并多次获得最佳论文奖,荣获2018年高等学校科学研究优秀成果奖(科学技术)二等奖。入选斯坦福大学发布的2023年度“全球前2%顶尖科学家”榜单。所著《心中有数:生活中的数学思维》,入选第18届文津图书奖推荐图书。