-
>
(精)方力钧作品图录
-
>
《藏书报》2021合订本
-
>
中外性文物大观
-
>
马克思主义经典著作解读丛书·探索人类解放的新路径《1844年经济学哲学手稿》解读
-
>
襄阳府志(九品)
-
>
奇思妙想创意玩具书(精装4册)
-
>
大慈恩寺
信号与系统 版权信息
- ISBN:9787030216694
- 条形码:9787030216694 ; 978-7-03-021669-4
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 所属分类:
信号与系统 内容简介
本书为普通高等教育"十一五"重量规划教材,研究线性时不变系统传输与处理确定性信号方面的基本概念和基本分析方法。研究对象涉及连续和离散时间信号与系统,研究方法包括时域分析和变换域分析,重点是变换域分析。本书共分为八章,主要内容包括:信号与系统的概述、连续时间信号与系统的时域分析、连续时间信号与系统的频域分析、连续时间信号与系统的复频域分析、连续时间信号的采样与量化、离散时间信号与系统的时域分析、离散时间信号与系统的z域分析和系统状态变量分析法。本书编写结构合理,可供不同教学时数选用;内容通俗易懂,便于自学;注重理论联系工程实际。全书各章都有精选的例题和不同类型的习题。
信号与系统 目录
前言
第1章 信号与系统概述 1
1.1 信息、信号和系统 1
1.2 信号的分类与描述 2
1.2.1 确定性信号与随机信号 2
1.2.2 连续时间信号与离散时间信号 2
1.2.3 实信号与复信号 3
1.2.4 周期信号与非周期信号 4
1.2.5 能量信号与功率信号 4
1.2.6 普通信号与奇异信号 5
1.2.7 维信号与多维信号 5
1.3 常用典型信号及其基本特性 5
1.3.1 正弦型信号 5
1.3.2 指数信号 6
1.3.3 矩形脉冲与三角脉冲 7
1.3.4 抽样信号 8
1.3.5 钟形脉冲信号(高斯信号) 9
1.4 奇异信号及其基本特性 10
1.4.1 单位斜变信号 10
1.4.2 单位阶跃信号 11
1.4.3 单位冲激信号 12
1.4.4 冲激偶函数 15
1.5 信号的基本运算及波形变换 16
1.5.1 相加和相乘 17
1.5.2 信号的时移 17
1.5.3 信号的反褶 18
1.5.4 信号的尺度变换 18
1.5.5 信号的微分 21
1.5.6 信号的枳分 21
1.5.7 信号的对称 22
1.6 信号的分解 99
1.6.1 直流分量和交流分量 23
1.6.2 偶分量和奇分量 23
1.6.3 脉冲分量 24
1.6.4 实部分量和虚部分量 25
1.7 系统模型、特性及分类 26
1.7.1 系统模型 26
1.7.2 系统的分类 29
1.8 线性时不变系统的性质 31
1.8.1 线性性质 31
1.8.2 时不变性质 32
1.8.3 因果性 32
1.8.4 稳定性 33
1.9 线性时不变系统的分析方法概述 33
习题 35
第2章 连续时间信号与系统的时域分析 38
2.1 经典时域解法 38
2.1.1 微分方程的建立与求解 39
2.1.2 从O到0+状态的转换 42
2.1.3 系统响应的分解模式 45
2.2 零输入响应和零状态响应 46
2.2.1 零输入响应 46
2.2.2 零状态响应 47
2.2.3 零输入线性和零状态线性 49
2.3 冲激响应和阶跃响应 50
2.3.1 冲激响应 50
2.3.2 阶跃响应 53
2.4 卷积积分 55
2.4.1 卷积积分的概念 55
2.4.2 卷积积分的图解法 56
2.4.3 卷积运算的性质 57
2.4.4 用卷积积分法求系统的零状态响应 62
2.5 相关 64
2.5.1 相关的概念 64
2.5.2 相关函数及其性质 66
2.5.3 相关与卷积的关系 68
习题 70
第3章 连续时间信号与系统的频域分析 74
3.1 信号的正交分解 74
3.1.1 矢量的正交分解 74
3.1.2 信号的正交分解 76
3.1.3 用正交函数集表示信号 77
3.2 周期信号的傅里叶级数 78
3.2.1 周期信号的傅里叶级数 78
3.2.2 周期信号的功率谱 83
3.2.3 傅里叶级数系数与函数对称性的关系 84
3.2.4 周期信号傅里叶级数的近似和傅里叶级数的收敛性 87
3.2.5 周期矩形脉冲信号的傅里叶级数 90
3.3 非周期信号的傅里叶变换 94
3.3.1 非周期信号傅里叶变换表示式的导出 94
3.3.2 典型非周期信号的傅里叶变换 96
3.4 连续时间信号傅里叶变换的性质及其应用 103
3.4.1 线性性质 103
3.4.2 尺度变换特性 103
3.4.3 奇偶虚实性 106
3.4.4 时移特性 108
3.4.5 频移特性 110
3.4.6 对偶性 112
3.4.7 时域微分特性 113
3.4.8 时域积分特性 115
3.4.9 频域微分特性 117
3.4.10 频域积分特性 118
3.4.11 时域眷积特性 118
3.4.12 频域卷积特性 119
3.4. 13 帕塞瓦尔定理 121
3.5 周期信号的傅里叶变换 123
3.5.1 正弦信号和余弦信号的傅里叶变换 124
3.5.2 一般周期信号的傅里叶变换 124
3.6 调制与解调 128
3.6.1 调制的性质 128
3.6.2 连续时间正弦幅度调制及其应用 128
3.7 线性时不变系统的频域分析法 131
3.7.1 系统的频率响应函数 131
3.7.2 系统的频域分析 133
3.8 无失真传输 135
3.9 理想低通滤波器 139
3.9.1 理想低通滤波器的频率特性和冲激响应 139
3.9.2 理想低通滤波器的阶跃响应 140
3.9.3 理想低通滤波器对矩形脉冲的响应 143
3. 10 佩利维纳准则和实际滤波器 144
3. 10.1 系统的物理可实现性和佩利维纳准则 144
3. 10.2 实际滤波器 145
习题 146
第4章 连续时间信号与系统的复频域分析 152
4.1 拉普拉斯变换 152
4.1.1 从傅里叶变换到拉普拉斯变换 152
4.1.2 拉普拉斯变换的收敛性 155
4.1.3 常用函数的拉普拉斯变换 156
4.2 拉普拉斯变换的性质 159
4.2.1 线性性质 159
4.2.2 时移特性 160
4.2.3 s域平移特性 163
4.2.4 时域微分特性 163
4.2.5 时域积分特性 165
4.2.6 s域微分特性 168
4.2.7 s域积分特性 168
4.2.8 尺度变换特性 169
4.2.9 初值定理 170
4.2. 10 终值定理 171
4.2. 11 卷积定理 172
4.3 控普拉斯逆变换 174
4.3.1 部分分式展开法 174
4.3.2 留数法 180
4.4 拉普拉斯变换与傅里叶变换的关系 182
4.5 线性系统的复频域分析 185
4.5.1 连续信号的复频域分解 186
4.5.2 基本信号e“激励下的零状态响应 186
4.5.3 般信号z(£)激励下的零状态响应 1864.5.4 系统常系数微分方程的拉普拉斯变换解 188
4.6 系统函数与系统特性 192
4.6.1 系统函数的定义 192
4.6.2 由系统函数确定系统的单位冲激响应 193
4.6.3 系统的s域框图表示 193
4.6.4 系统函数零点、极点分布与系统时域特性的关系 196
4.6.5 白由响应与强迫响应、暂态响应与稳态响应 200
4.6.6 系统函数零点、极点分布与系统频响特性的关系 203
4.6.7 正弦稳态响应 205
4.7 系统的稳定性 207
4.7.1 系统稳定性的概念 207
4.7.2 系统稳定性的判别准则 211
习题 214
第5章 连续时间信号的抽样与量化 220
5.1 引言 220
5.2 时域抽样定理 220
5.2.1 矩形脉冲序列抽样 221
5.2.2 冲激序列抽样 222
5.2.3 时域抽样定理 993
5.3 频率混叠效应和信号抽样频率的选择 225
5.4 利用内插从样本值重建信号 997
5.4.1 理想内插 997
5.4.2 零阶保持内插 228
5.4.3 线性内插 230
5.5 频域抽样定理 231
5.5.1 频域抽样 231
5.5.2 频域抽样定理 232
5.6 信号的截断与时窗 233
5.7 连续时间信号的量化 236
习题 239
第6章 离散时间信号与系统的时域分析 240
6.1 离散时间信号——序列 240
6.1.1 常用序列 240
6.1.2 序列的基本运算 244
6.2 序列的卷积和 249
6.2.1 卷积和的定义及计算 249
6.2.2 卷积和的性质 251
6.3 线性移不变系统 253
6.3.1 线性系统 253
6.3.2 移不变系统 254
6.3.3 单位样值响应与卷积和 254
6.3.4 凶果系统 255
6.3.5 稳定系统 256
6.4 离散时间系统的时域分析法 257
6.4.1 常系数线性差分方程的建立 258
6.4.2 离散系统的经典解法 259
6.4.3 用迭代法求解差分方程 261
6.4.4 零输入响应与零状态响应解法 262
6.4.5 离散系统单位样值响应的确定 264
6.4 利用单位样值响应与卷积和求系统的零状态响应 266
6.5 离散相关 267
6.5.1 相关函数的定义 267
6.5.2 相关函数与线性卷积的关系 268
6.5.3 相关函数的性质 269
6.5.4 相关函数的应用 269
习题 270
第7章 离散时间信号与系统的z域分析 274
7.1 z变换的定义及收敛域 274
7.1.1 z变换的定义 274
7.1.2 z变换的收敛域 275
7.1.3 常用序列的z变换 278
7.2 z反变换 281
7.2.1 部分分式展开法 281
7.2.2 幂级数展开法(长除法) 282
7.2.3 围线积分法(留数法) 284
7.3 z交换的基本性质和定理 285
7.4 z变换与拉普拉斯变换、傅里叶变换的关系 293
7.4.1 z变换与拉普拉斯变换的关系 294
7.4.2 变换与傅里叶变换的关系 295
7.5 序列的傅里叶变换的定义和性质 296
7.5.1 序列的傅里叶变换的定义 296
7.5.2 序列傅里叶变换的性质 297
7.5.3 周期序列的离散傅里叶级数和傅里叶变换表示式 302
7.6 利用g变换求解差分方程 307
7.7 离散系统的系统函数和频率响应 311
7.7.1 凶果稳定系统 311
7.7.2 系统函数与差分方程的关系 312
7.7.3 系统的频率响应 313
7.8 离散系统的信号流图 314
习题 317
第8章 线性系统的状态变量分析 320
8.1 系统的状态变量描述 320
8.2 状态方程的建立 321
8.2.1 连续时间系统状态方程的建立 322
8.2.2 离散时间系统状态方程的建立 325
8.3 状态方程的求解 328
8.3.1 连续时间系统状态方程的求解 328
8.3.2 离散时间系统状态方程的求解 333
8.4 系统的可控制性和可观测性 337
8.4.1 系统的可控制性 338
8.4.2 系统的可观测性 339
习题 340
参考文献 344
信号与系统 节选
第1章 信号与系统概述 本章是全书的基础,概括介绍有关信号与系统的基本概念和基本理论。有关信号方面概要介绍了信号的描述、分类、分解、基本运算和波形变换,详细阐述了常用的典型信号、奇异信号的概念及其基本性质,重点描述了冲激信号的物理意义、定义和性质。有关系统方面概要介绍了系统的概念和分析方法,详细阐述了系统的模型及其划分,重点描述了线性时不变系统的性质。 1.1 信息、信号和系统 在人类认识和改造白然界的过程中都离不开获取白然界的信息。所谓信息,是指存在于客观世界的一种事物形象,一般泛指消息、情报、指令、数据和信号等有关周围环境的知识。凡是物质的形态、特性在时间或空间上的变化以及人类社会的各种活动都会产生信息。人类用白己的感觉器官从客观世界获取各种信息,如语言、文字、图像、颜色、声音和自然景物信息等。可以说,我们是生活在信息的海洋之中,获取信息的活动是人类*基本的活动之一。 消息是指用来表达信息的语言、文字、图像和数据,如电报中的电文、电话中的声音、电视中的图像和雷达探测的目标距离等都是消息。在得到一个消息后,可能得到一定数量的信息,而所得到的信息与在得到消息前后对某一事件的无知程度有关。 信号是指淌息的表现形式,是带有信息的某种物理量,如电信号、光信号和声信号等。消息的传送一般都不是直接的,必须借助于一定形式的信号才能便于远距离快速传输和进行各种处理。由于信号是带有信息的某种物理量,这些物理量的变化包含着信息,因此信号可以是随时间变化或随空间变化的物理量,在数学上,可以用一个或几个独立变量的函数表示,也可以用曲线、图形等方式表示。信号代表着消息,消息中又含有信息,信号是信息的载体,信号一般代表声音、图像和编码等消息。信号是消息的表现形式与传送载体,消息是信号的传送内容。电信号是应用*广泛的物理量,是电压、电流或电磁场等物理量与消息内容相对应的变化形式,简称为信号,它可以用以时间£为白变量的某一函数关系来表示。 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。系统是由各个不同单元按照一定的方式组成并完成某种任务整体的总称。系统所完成的任务就是处理、传输和存储信号,以达到自然界、人类社会、生产设备按照对人类有利的规律运动的目的,所以系统的组成、特性应由信息和信号决定。从上述可知,信息、信号和系统是不可分割的整体。 1.2 信号的分类与描述 信号的分类方法很多,可以从不同的角度对信号进行分类。在信号与系统分析中,常以信号所具有的时间函数特性来加以分类,可以分为确定性信号与随机信号、连续时间信号与离散时间信号、周期信号与非周期信号、能量信号与功率信号、实信号与复信号、奇异信号与普通信号、一维信号与多维信号等。 1.2.1 确定性信号与随机信号 确定性信号是对于指定的某一时刻£,可确定相应的函数值与之对应(有限个不连续点除外)。工程上,有许多物理过程产生的信号都是可以重复出现、可以预测的,并且能够用明确的数学表示式表示。例如,卫星在轨道上的运行、电容器通过电阻放电时电路中电流的变化和机器工作时各个构件的运动等,它们产生的信号都属于确定性信号。但是,实际传输的信号往往具有未可预知的不确定性,这种信号通常称为随机信号或不确定的信号。这种信号是随机的,不能以明确的数学表示式表示,只能知道该信号的统计特性。例如,在通信传输过程中引入的各种噪声,即使在相同的条件下进行观察测试,每次的结果都不相同,呈观出随机性和不可预测性。 确定性信号与随机信号有着密切的联系,在一定条件下,随机信号也会表现出某种确定性。例如,乐音表现为某种周期性变化的波形,电码可描述为具有某种规律的脉冲波形等。作为理论上的抽象,应该首先研究确定性信号,在此基础之上才能根据随机信号的统计规律进一步研究随机信号的特性。 本书主要研究确定性信号,随机信号将在随机信号分析中研究。 1.2.2 连续时间信号与离散时间信号 按照信号在时间轴上取值是否连续,可将信号分成连续时间信号与离散时间信号。连续时间信号*明显的特点是白变量f在其定义域上除有限个间断点外,其余是连续可变的,简称连续信号。由于连续是相对时间而言的,故信号幅值可以是连续的也可以是不连续的,对于幅值和时间都是连续的信号,称为模拟信号。 与连续信号相对应的是离散信号。离散时间信号是指时间(其定义域为一个整数集)是离散的,只在某些不连续的时刻给出函数值,在其他时间没有定义的信号(或称序列),简称离散信号,如图1.2.1(a)所示。如果离散时间信号不仅在时间上是离散的,而且在幅度上又是量化的,则称为数字信号,如图1.2.1(b)所示。 1.2.4周期信号与非周期信号 一个连续信号fit),若对所有t均有 (1.2.2) 则称/(0为连续周期信号,满足上式的*小:T值称为/G)的周期,如图1.2.3所示。 如果两个周期信号x(t)和y(t)的周期具有公倍数,则它们的和仍然是一个周期信号,其周期是x(t)和y(t)周期的*小公倍数。 1.2.5能量信号与功率信号 若将信号f(t)设为电压或电流,则加载在单位电阻上产生的瞬时功率为,在一定的时间区间内会消耗一定的能量,如果将时间区间无限扩展,那么信号的能量定义为 (1.2.3)信号功率等于所有时间段上信号能量的时间平均值,即 (1.2.4) 如果在无限大时间区间内信号的能量为有限值,且平均功率,这类信号称为能量有限信号,简称能量信号。如果在无限大时间区间内,信号的总能量为无穷大,平均功率为有限值,则称此信号为功率有限信号,简称功率信号。 通常周期信号都是功率信号,非周期信号可以是能量信号、功率信号或非功率、非能量信号。图1.2.4(a)所示的脉冲信号是能量信号;图1.2.4(b)所示信号为功率信号,它是持续时间无限而幅度有限的非周期信号;图1.2.4(c)所示的单位斜坡信号为非功率、非能量信号,它是持续时间无限、幅度也无限的非周期信号。 1.2.6普通信号与奇异信号 在信号与系统分析中,经常会遇到一类信号,它本身包含不连续点,或者其导数与积分存在不连续点,不能以普通函数的概念来定义,只能用“广义函数”的概念来研究,此类信号称为奇异信号。 通常,我们研究的典型信号都是一些抽象的数学模型,这些信号与实际信号可能有差距,然而,只要把实际信号按某种条件理想化,即可运用理想模型进行分析。 1.2.7一维信号与多维信号 一维信号是由一个自变量描述的信号,多维信号是由多个自变量描述的信号。例如:语音信号就是一维信号;静止平面图像信号为平面坐标的函数,称为二维信号;运动的平面图像信号是立体坐标的函数,称为三维信号。在以后的讨论中,一般情况下只研究一维信号,且自变量为时间。在个别情况下,自变量可能不是时间,比如,在气象观测中,温度、气压或风速将随高度而变化,此时自变量就是高度。 除以上划分方式之外,还可将信号分为调制信号、载波信号与已调信号,时限信号与带限信号等。 1.3常用典型信号及其基本特性 本节介绍几种重要的连续时间信号,这些信号在以后的课程中经常用到,实际中,复杂的信号可由这些基本的信号组合而成,并且这些信号对线性系统产生的响应对分析系统和了解系统的性质起着主导作用,具有普遍意义。 1.3.1正弦型信号 随着连续时间t按正弦规律变化的信号称为正弦信号。在信号分析中由于余弦信号同正弦信号只是在相位上相差,所以将余弦信号和正弦信号统称为正弦型信号。 正弦型信号的一般形式表示为 (1.3.1) 式中,和分别为正弦信号的振幅、角频率和初相,如图1.3.1所示。正弦型信号是周期信号,其周期:T、频率/和角频率之间的信号与系统关系为 (1.3.2) 正弦型信号具有如下性质: (1)两个频率相同的正弦型信号相加,即使其振幅和相位各不相同,但相加后结果是原频率的正弦型信号。 (2)若一个正弦型信号的频率是另一个信号频率的整数倍,则合成信号是一个非正弦型周期信号,其周期等于基波的周期。 (3)正弦型信号的微分或积分仍然是同频率的正弦型信号。 1.3.2指数信号 连续时间指数信号,简称指数信号,其一般形式为 (1.3.3) 根据式中A和s在复数域内的不同取值,有以下三种情况: (1)若和均为实常数,则/G)为实指数信号,如图1.3.2所示,即 (1.3.4) (2)若,则为虚指数信号,即 (1.3.5) 根据欧拉公式,虚指数信号可以表示为 (1.36) (1.3.7) 由式(1.3.6)、式(1.3.7)可得(1.3.8) (1.3.9) 图1.3.2实指数信号的波形 式(1.3.6)表明的实部和虚部都是角频率为的正弦振荡。因此,也是周期信号,其周期。式(1.3.8)、式(1.3.9)是常用到的一对关系式。
- >
回忆爱玛侬
回忆爱玛侬
¥9.8¥32.8 - >
人文阅读与收藏·良友文学丛书:一天的工作
人文阅读与收藏·良友文学丛书:一天的工作
¥14.7¥45.8 - >
中国人在乌苏里边疆区:历史与人类学概述
中国人在乌苏里边疆区:历史与人类学概述
¥36.0¥48.0 - >
月亮虎
月亮虎
¥14.4¥48.0 - >
自卑与超越
自卑与超越
¥29.9¥39.8 - >
中国历史的瞬间
中国历史的瞬间
¥16.7¥38.0 - >
朝闻道
朝闻道
¥15.0¥23.8 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0
-
4.23文创礼盒A款--“作家言我精神状态”
¥42.3¥206 -
4.23文创礼盒B款--“作家言我精神状态”
¥42.3¥206 -
一句顶一万句 (印签版)
¥40.4¥68 -
百年书评史散论
¥14.9¥38 -
1980年代:小说六记
¥52.8¥69 -
中图网经典初版本封面-“老人与海”冰箱贴
¥20¥40