-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
人工智能技术基础及应用 版权信息
- ISBN:9787111712558
- 条形码:9787111712558 ; 978-7-111-71255-8
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
人工智能技术基础及应用 本书特色
适读人群 :高等院校人工智能、机器人工程、自动化、智能医学工程等相关专业的大学生和研究生;研究机构和企业中从事人工智能相关行业的研究人员和工程师;以及人工智能技术爱好者本教材是基于山东大学人工智能、机器人工程、智能医学工程等新工科专业建设,特别是“人工智能与机器人”新工科实验班的教学育人实践,因此本教材有着扎实的理论功底和实践基础,是一本理实结合的、有特色的新工科教材。 本教材的编写专注于人工智能前沿的深度学习技术。结合大学相关专业知识体系的构成,将理论和代码相结合,通过代码的可视化,使得理论知识变得直观有趣;介绍应用广泛的Pytorch框架为主,满足新型互联网时代共享代码的社区生态需求;本教材包含综合实践项目,使同学经历知识学习、编程测试、实际部署、效果展示等过程,在掌握技术的同时提高兴趣。
人工智能技术基础及应用 内容简介
本书聚焦近期涌现的人工智能、机器人工程、智能医学:工程等新工科专业对于人才培养的实际需求,着力解决人工智能基础知识交叉贯通不足、配套实验实践支撑不强等问题。书中主要内容包括Python编程基础、神经网络基础、深度学习计算框架、卷积神经网络、序列到序列网络、目标检测及其应用、语义分割及其应用等。
人工智能技术基础及应用 目录
前言
第1章Python编程基础
1.1Python简介
1.2Python安装与运行
1.3Python基础编程
1.3.1标识符
1.3.2注释
1.3.3行和缩进
1.3.4变量和数据类型
1.3.5基本计算
1.3.6数据结构
1.3.7控制语句
1.3.8函数
1.3.9模块
1.4Python面向对象编程
1.4.1类
1.4.2继承机制
1.4.3类变量与方法的属性
1.5Python常用库介绍
1.5.1NumPy库
1.5.2Matplotlib库
1.6小结
参考文献
第2章神经网络基础
2.1感知机模型
2.2神经网络模型
2.2.1神经网络的架构
2.2.2激活函数
2.3神经网络学习原理
2.3.1数据集的准备
2.3.2损失函数
2.3.3小批量学习
2.3.4梯度下降法
2.3.5误差反向传播算法
2.4神经网络学习实践
2.4.1设计神经网络类
2.4.2小批量学习的实现
2.5神经网络学习技巧
2.5.1优化方法的选择
2.5.2权重初始值的设定
2.5.3批量归一化
2.5.4正则化方法
2.5.5数据增强
2.6小结
参考文献
第3章深度学习计算框架
3.1常用深度学习计算框架简介
3.2GPU加速配置
3.3PyTorch安装
3.4张量
3.4.1张量的概念
3.4.2张量的基本操作
3.5动态计算图
3.6神经网络层和模块
3.7PyTorch神经网络学习实践
3.8小结
参考文献
第4章卷积神经网络
4.1卷积神经网络的基本原理
4.1.1卷积神经网络的基本架构
4.1.2卷积运算
4.1.3卷积运算实例:边缘检测
4.1.4卷积层及其代码实现
4.1.5填充
4.1.6步幅
4.1.7池化
4.2经典卷积神经网络模型
4.2.1数据集的准备
4.2.2Pipeline
4.2.3LeNet
4.2.4AlexNet
4.2.5VGG
4.2.6GoogLeNet
4.2.7ResNet
4.3小结
参考文献
第5章序列到序列网络
5.1循环神经网络(RNN)
5.1.1RNN的基本原理
5.1.2RNN的简单实现
5.2长短期记忆网络(LSTM)
5.2.1LSTM的基本原理
5.2.2LSTM的简单实现
5.3Transformer网络
5.3.1自注意力层
5.3.2Transformer网络结构
5.3.3Vision Transformer(ViT)网络
5.4小结
参考文献
第6章目标检测及其应用
6.1目标检测的基本概念
6.1.1边界框
6.1.2锚框
6.1.3交并比
6.1.4NMS操作
6.1.5评价指标
6.2常用的目标检测算法
6.2.1区域卷积神经网络(R-CNN)系列
6.2.2YOLO系列
6.3实践案例:行人检测
6.3.1基于Faster R-CNN的行人检测
6.3.2基于YOLO v5的行人检测
6.3.3YOLO v5与Faster R-CNN算法对比
6.4小结
参考文献
第7章语义分割及其应用
7.1语义分割的基本概念
7.1.1语义分割任务描述
7.1.2上采样
7.1.3膨胀卷积
7.1.4定义损失函数
7.1.5评价指标
7.2语义分割网络
7.2.1FCN
7.2.2U-Net架构
7.2.3DeepLab系列
7.3实践案例:城市街景分割
7.3.1实践Pipeline
7.3.2算法对比分析
7.4小结
参考文献
人工智能技术基础及应用 作者简介
张伟,教授,山东大学,毕业于香港中文大学,现从事人工智能、机器人方面的研究与教学工作。先后主持/参与部省校本科教改项目10项;撰写“新工科人工智能相关专业程序设计课程体系设置探讨”教研论文并发表在清华大学主办的教研期刊《计算机教育》;担任学院教学指导委员会委员,中国自动化学会智慧教育专委会首届委员;获山东省自动化学会教学成果特等奖、山东大学教学成果二等奖等荣誉奖励。
- >
唐代进士录
唐代进士录
¥25.5¥39.8 - >
【精装绘本】画给孩子的中国神话
【精装绘本】画给孩子的中国神话
¥19.3¥55.0 - >
姑妈的宝刀
姑妈的宝刀
¥9.0¥30.0 - >
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
¥6.3¥14.0 - >
伯纳黛特,你要去哪(2021新版)
伯纳黛特,你要去哪(2021新版)
¥15.9¥49.8 - >
中国历史的瞬间
中国历史的瞬间
¥16.7¥38.0 - >
巴金-再思录
巴金-再思录
¥14.7¥46.0 - >
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
¥9.9¥23.0
-
”互联网+“时代计算机算法的应用及其实践研究
¥19.9¥59 -
微服务设计
¥52.8¥69 -
图说深度学习:用可视化方法理解复杂概念
¥109¥188 -
计算机基础
¥17.2¥31 -
改变未来的九大算法
¥50¥68 -
生成式AI入门与AWS实战
¥77.8¥99.8