-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
时间序列分析 版权信息
- ISBN:9787115592736
- 条形码:9787115592736 ; 978-7-115-59273-6
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
时间序列分析 本书特色
1.理论与实践相结合。根据经济学和管理学中常见的数据分析,针对性的介绍时间序列分析的建模和预测方法,并辅以大量应用实例和数据分析计算机代码,实用性强。 2.作者权威。作者涂云东副教授长期从事时间序列分析研究工作和教学,入选青年长江学者,有三十多篇论文发表在经济学和统计学的国际顶级期刊和知名期刊。 3.资源丰富。配套微课,并提供PPT 课件、教学大纲、数据集、R 语言代码、课后习题答案、模拟试卷及答案等丰富教学资源。
时间序列分析 内容简介
本书以时间序列模型为基础,以经济学和管理学中的案例为载体,采用理论讲解与数据分析案例实践相结合的方式编写而成。全书共9章,包括时间序列分析基础、线性时间序列模型、单位根时间序列模型、非线性时间序列模型、协整时间序列模型、波动率模型、时间序列的机器学习方法、时间序列的深度学习方法和课程综合案例等内容。 本书配有PPT课件、教学大纲、数据集、R语言代码、课后习题答案、模拟试卷及答案等教学资源,使用本书的老师可在人邮教育社区免费下载使用。 本书不仅可以作为统计学、数据科学等相关专业本科生学习数据建模相关课程的教材,也可以作为研究生、政府人员和企业管理人员学习预测和决策方法的培训书或自学书。
时间序列分析 目录
本章导读 1
1.1 时间序列数据概述 1
1.1.1 数据类型 1
1.1.2 数据可视化 2
1.1.3 数据来源 5
1.1.4 数据特征 6
1.1.5 数据预处理 10
1.2 时间序列的基本概念 10
1.2.1 平稳性 10
1.2.2 遍历性 10
1.2.3 白噪声 11
1.2.4 鞅差过程 11
1.2.5 相依性度量 11
1.2.6 长期协方差 15
1.3 时间序列基本模型 17
1.3.1 白噪声模型 17
1.3.2 滑动平均模型 17
1.3.3 自回归模型 18
1.3.4 自回归滑动平均模型 19
1.4 时间序列预测方法 19
1.4.1 均值预测法 19
1.4.2 朴素预测法 19
1.4.3 滑动平均法 20
1.4.4 指数平滑法 20
1.4.5 模型预测法 20
1.5 案例分析:投资组合 21
习题 21
第 2章 线性时间序列模型 23
本章导读 23
2.1 线性时间序列模型基础 23
2.1.1 线性时间序列过程 23
2.1.2 滞后算子 24
2.2 自回归模型 25
2.2.1 一阶自回归模型 25
2.2.2 二阶自回归模型 26
2.2.3 p阶自回归模型 28
2.2.4 自回归模型定阶 29
2.2.5 自回归模型预测 32
2.3 滑动平均模型 34
2.3.1 一阶滑动平均模型 35
2.3.2 二阶滑动平均模型 35
2.3.3 q阶滑动平均模型 36
2.3.4 滑动平均模型定阶 37
2.3.5 滑动平均模型预测 37
2.4 自回归滑动平均模型 39
2.4.1 简单自回归滑动平均模型 39
2.4.2 自回归滑动平均模型定阶 40
2.4.3 自回归滑动平均模型预测 42
2.5 线性时间序列建模指南 44
2.5.1 线性时间序列建模思想 44
2.5.2 线性时间序列建模步骤 45
2.6 案例分析 46
习题 48
第3章 单位根时间序列模型 50
本章导读 50
3.1 单位根举例 50
3.1.1 醉汉 50
3.1.2 股票价格 50
3.1.3 消费 51
3.2 自回归模型的统计推断 51
3.2.1 平稳过程 52
3.2.2 单位根过程 52
3.2.3 爆炸过程 53
3.3 单位根检验 53
3.3.1 Dickey-Fuller检验 54
3.3.2 Phillips-Perron检验 61
3.3.3 ADF检验 64
3.3.4 其他检验 65
3.4 案例分析 68
习题 71
第4章 非线性时间序列模型 72
本章导读 72
4.1 参数非线性时间序列模型 72
4.1.1 自激励门限自回归模型 72
4.1.2 平滑转换自回归模型 73
4.1.3 马尔可夫区制转换自回归模型 74
4.2 非参数时间序列模型 76
4.2.1 核估计 77
4.2.2 筛分估计 80
4.3 半参数时间序列模型 83
4.3.1 部分线性回归模型 83
4.3.2 单因子回归模型 83
4.3.3 可加模型 84
4.3.4 变系数模型 84
4.4 非线性检验 85
4.4.1 参数非线性检验 85
4.4.2 非参数模型设定检验 88
4.5 案例分析 91
习题 94
第5章 协整时间序列模型 95
本章导读 95
5.1 虚假回归 95
5.1.1 虚假回归的发现 95
5.1.2 虚假回归的特征 96
5.2 协整模型 98
5.2.1 协整的定义 98
5.2.2 协整的误差修正表示 99
5.2.3 协整的检验 101
5.3 平衡回归 112
5.3.1 平衡回归的构造 113
5.3.2 平衡回归的性质 113
5.4 非线性协整模型 114
5.4.1 参数非线性协整模型 114
5.4.2 非参数协整模型 115
5.4.3 半参数协整模型 115
5.4.4 变系数协整模型 116
5.5 协整模型的模型设定检验 116
5.6 案例分析 117
习题 121
第6章 波动率模型 122
本章导读 122
6.1 自回归条件异方差模型 122
6.1.1 ARCH模型及其性质 123
6.1.2 ARCH模型的估计 125
6.1.3 检验ARCH效应 125
6.1.4 ARCH模型建模步骤 126
6.2 广义自回归条件异方差模型 128
6.3 其他条件异方差模型 132
6.3.1 IGARCH 132
6.3.2 ARCH-M模型 132
6.3.3 EGARCH 132
6.3.4 TGARCH 133
6.3.5 半/非参数GARCH 134
6.4 多元波动率模型 135
6.4.1 条件协方差模型 135
6.4.2 条件方差和条件相关系数模型 136
6.5 案例分析 137
习题 143
第7章 时间序列的机器学习方法 144
本章导读 144
7.1 支持向量回归 144
7.2 回归树 147
7.3 聚类 149
7.3.1 聚类的基本思想 149
7.3.2 k均值聚类 150
7.3.3 分层聚类 151
7.4 案例分析 153
7.4.1 案例分析1:SVR和回归树的应用 153
7.4.2 案例分析2:时间序列聚类 155
习题 159
第8章 时间序列的深度学习方法 160
本章导读 160
8.1 前馈神经网络 160
8.1.1 神经元 160
8.1.2 多层感知机 163
8.2 卷积神经网络 165
8.3 循环神经网络 168
8.3.1 简单循环单元网络 168
8.3.2 长短期记忆网络 169
8.3.3 门控循环单元网络 170
8.4 案例分析 171
8.4.1 案例分析1:美国GNP数据神经网络预测 171
8.4.2 案例分析2:股票涨跌的神经网络预测 174
习题 175
第9章 课程综合案例 176
本章导读 176
9.1 案例分析:投资组合 176
9.2 股票的超额收益率的均值预测 178
9.3 股票超额收益率的波动率预测 178
9.4 投资组合 180
9.5 投资策略 182
参考文献 184
时间序列分析 作者简介
涂云东 北京大学光华管理学院和北京大学统计科学中心联席教授。入选“日出东方-光华青年人才 ,北京大学优秀博士学位论文指导教师,教育部“********”青年长江学者。2004年和2006年先后获武汉大学理学学士学位和经济学硕士学位,2012年获美国加州大学河滨分校经济学博士学位。亚太青年计量经济学者会议发起人和组织者。30余篇学术论文发表在多个国际、国内专业杂志上。主持多个国家自然科学基金项目,并担任自然科学基金匿名评审。曾获世界计量经济学会、加州计量经济学会议等学术组织提供的青年学者研究资助。研究领域涵盖时间序列分析、非参数计量方法、大数据分析、金融计量和预测等。
- >
姑妈的宝刀
姑妈的宝刀
¥13.5¥30.0 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
史学评论
史学评论
¥23.2¥42.0 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
有舍有得是人生
有舍有得是人生
¥14.4¥45.0 - >
上帝之肋:男人的真实旅程
上帝之肋:男人的真实旅程
¥19.3¥35.0 - >
回忆爱玛侬
回忆爱玛侬
¥9.8¥32.8 - >
山海经
山海经
¥20.4¥68.0
-
普林斯顿微积分读本-(修订版)
¥69.3¥99 -
怎样解题
¥17.2¥29 -
数学-应用与思考
¥16.1¥32.8 -
高等代数思想方法分析及应用研究
¥25.3¥76 -
高等代数典型问题研究与实例探析
¥30.4¥92 -
数字唬人:用常识看穿无所不在的数字陷阱
¥16¥36.8