书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
跟我一起学机器学习

跟我一起学机器学习

作者:王成
出版社:清华大学出版社出版时间:2022-07-01
开本: 16开 页数: 248
中 图 价:¥51.8(7.5折) 定价  ¥69.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

跟我一起学机器学习 版权信息

  • ISBN:9787302592846
  • 条形码:9787302592846 ; 978-7-302-59284-6
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

跟我一起学机器学习 本书特色

笔者根据多年的学习和工作经验,总结出一条有效的学习路线:先抓主干,后抓枝节。学习一个算法就好比遍历一棵大树上的所有枝节,算法越是复杂其对应的枝叶也就越多。一个算法的学习,笔者将它归结成了5个层次:理解主要思想、掌握算法原理、熟练开源模型、完成数学推导和进行源码实现,帮助读者分阶段地学习,轻松迈入机器学习的大门。 理论与实践并重、内容有趣的机器学习入门图书! 10章教学课件,40多个示例源代码,助力读者轻松迈入机器学习的大门★在学习的过程中*重要的并不是将相应的知识点直接灌输给你,而是应该先抛出问题让你产生思考,然后一步步引导你去解决这个问题,从而学得这个知识点。《跟我一起学机器学习》在行文过程中有些地方虽然看似多余,但实则遵循了这个学习理念,使广大读者既能做到知其然,同时也能做到知其所以然。 ——吴庆耀,华南理工大学软件学院副院长,教授,博士生导师★虽然近年来市面上出现了不少类似的书籍,但是《跟我一起学机器学习》以独特的方式来介绍每个算法的知识脉络,使读者不仅能够以正反馈的形式进行学习,还能有效地掌握每个算法背后的数学原理。对于广大初学者来讲,它不失为一个好的选择。 ——黄卫春,华东交通大学现代教育技术中心主任,教授,硕士生导师★在机器学习相关算法的学习过程中,找到一种适合自己的学习方法尤其重要。《跟我一起学机器学习》提出类似“广度优先遍历”的学习步骤,将整个学习过程划分为3个阶段和5个步骤,有助于提高初学者在学习过程中的效率和积极性。 ——钟茂生,江西师范大学计算机信息工程学院教授,硕士生导师★在学习机器学习的过程中,不同的人对自己有不同的要求。对于有些人来讲力求知晓算法的每个细节,而对于另一些人来讲可能只想明白算法的大致思想与原理并学会使用即可。《跟我一起学机器学习》有效地将每个算法的学习过程分为了3个阶段,所以不管你是前者还是后者,选择它都能让你受益匪浅。 ——杨小飞,澳门大学博士后 ★动手实践是学好机器学习的关键,而如何有效做到理论与实践两者之间的兼顾是衡量一本书优劣与否的关键。《跟我一起学机器学习》将一个算法的学习过程划分为3个阶段,既注重了理论上的学习,同时也兼顾了实践中的锻炼,对于初学者来讲是一个再好不过的选择。 ——王绍凯,北京大学博士后,嘉实基金管理有限公司机器学习高级研究员

跟我一起学机器学习 内容简介

本书系统地阐述机器学习中常见的几类算法模型,包括模型的思想、原理及实现细节等。同时,本书还结合了当前热门的机器学习框架sklearn,对书中所涉及的模型在用法上进行详细讲解。全书共10章,第1章介绍机器学习开发环境的配置;第2章讲解线性回归模型的基本原理、回归模型中常见的几种评价指标,以及用于有监督模型训练的梯度下降算法;第3章介绍逻辑回归模型的基本原理和分类模型中常见的几种评价指标;第4章介绍模型的改善与泛化,包括特征标准化、如何避免过拟合及如何进行模型选择等;第5章讲解K近邻分类算法的基本原理及kd树的构造与搜索;第6章介绍朴素贝叶斯算法的基本原理;第7章介绍几种常见的文本特征提取与模型复用,包括词袋模型和TF-IDF等;第8章讲解决策树与集成学习,包括几种经典的决策树生成算法和集成模型;第9章介绍支持向量机的基本原理与求解过程;第10章介绍几种经典的聚类算法及相应的评价指标计算方法。本书包含大量的代码示例及实际案例介绍,可以作为计算机相关专业学生入门机器学习的读物,也可以作为非计算机专业及培训机构的参考用书。

跟我一起学机器学习 目录








第1章环境配置


1.1安装Conda


1.1.1Windows环境


1.1.2Linux环境


1.2替换源


1.3Conda环境管理


1.3.1虚拟环境安装


1.3.2虚拟环境使用


1.4PyCharm安装与配置


1.5小结


第2章线性回归


2.1模型的建立与求解


2.1.1理解线性回归模型


2.1.2建立线性回归模型


2.1.3求解线性回归模型


2.1.4sklearn简介


2.1.5安装sklearn及其他库


2.1.6线性回归示例代码


2.1.7小结


2.2多变量线性回归


2.2.1理解多变量


2.2.2多变量线性回归建模


2.2.3多变量回归示例代码


2.3多项式回归


2.3.1理解多项式


2.3.2多项式回归建模


2.3.3多项式回归示例代码


2.3.4小结


2.4回归模型评估


2.4.1常见回归评估指标


2.4.2回归指标示例代码


2.4.3小结


2.5梯度下降


2.5.1方向导数与梯度


2.5.2梯度下降算法


2.5.3小结


2.6正态分布


2.6.1一个问题的出现


2.6.2正态分布


2.7目标函数推导


2.7.1目标函数


2.7.2求解梯度


2.7.3矢量化计算


2.7.4从零实现线性回归


2.7.5小结






第3章逻辑回归


3.1模型的建立与求解


3.1.1理解逻辑回归模型


3.1.2建立逻辑回归模型


3.1.3求解逻辑回归模型


3.1.4逻辑回归示例代码


3.1.5小结


3.2多变量与多分类


3.2.1多变量逻辑回归


3.2.2多分类逻辑回归


3.2.3多分类示例代码


3.2.4小结


3.3常见的分类评估指标


3.3.1二分类场景


3.3.2二分类指标示例代码


3.3.3多分类场景


3.3.4多分类指标示例代码


3.3.5小结


3.4目标函数推导


3.4.1映射函数


3.4.2概率表示


3.4.3极大似然估计


3.4.4求解梯度


3.4.5从零实现二分类逻辑回归


3.4.6从零实现多分类逻辑回归


3.4.7小结


第4章模型的改善与泛化


4.1基本概念


4.2特征标准化


4.2.1等高线


4.2.2梯度与等高线


4.2.3标准化方法


4.2.4特征组合与映射


4.2.5小结


4.3过拟合


4.3.1模型拟合


4.3.2过拟合与欠拟合


4.3.3解决欠拟合与过拟合问题


4.3.4小结


4.4正则化


4.4.1测试集导致糟糕的泛化误差


4.4.2训练集导致糟糕的泛化误差


4.4.3正则化中的参数更新


4.4.4正则化示例代码


4.4.5小结


4.5偏差、方差与交叉验证


4.5.1偏差与方差定义


4.5.2模型的偏差与方差


4.5.3超参数选择


4.5.4模型选择


4.5.5小结


4.6实例分析手写体识别


4.6.1数据预处理


4.6.2模型选择


4.6.3模型测试


4.6.4小结


第5章K近邻


5.1K近邻思想


5.2K近邻原理


5.2.1算法原理


5.2.2K值选择


5.2.3距离度量


5.3sklearn接口与示例代码


5.3.1sklearn接口介绍


5.3.2K近邻示例代码


5.3.3小结


5.4kd树


5.4.1构造kd树


5.4.2*近邻kd树搜索


5.4.3*近邻搜索示例


5.4.4K近邻kd树搜索


5.4.5K近邻搜索示例


5.4.6小结


第6章朴素贝叶斯


6.1朴素贝叶斯算法


6.1.1概念介绍


6.1.2理解朴素贝叶斯


6.1.3计算示例


6.1.4求解步骤


6.1.5小结


6.2贝叶斯估计


6.2.1平滑处理


6.2.2计算示例


6.2.3小结


第7章文本特征提取与模型复用


7.1词袋模型


7.1.1理解词袋模型


7.1.2文本分词


7.1.3构造词表


7.1.4文本向量化


7.1.5考虑词频的文本向量化


7.1.6小结


7.2基于贝叶斯算法的垃圾邮件分类


7.2.1载入原始文本


7.2.2制作数据集


7.2.3训练模型


7.2.4复用模型


7.2.5小结


7.3考虑权重的词袋模型


7.3.1理解TFIDF


7.3.2TFIDF计算原理


7.3.3TFIDF计算示例


7.3.4TFIDF示例代码


7.3.5小结


7.4词云图


7.4.1生成词云图


7.4.2自定义样式


7.4.3小结


第8章决策树与集成学习


8.1决策树的基本思想


8.1.1冠军球队


8.1.2信息的度量


8.1.3小结


8.2决策树的生成之ID3与C4.5


8.2.1基本概念与定义


8.2.2计算示例


8.2.3ID3生成算法


8.2.4C4.5生成算法


8.2.5特征划分


8.2.6小结


8.3决策树生成与可视化


8.3.1ID3算法示例代码


8.3.2决策树可视化


8.3.3小结


8.4决策树剪枝


8.4.1剪枝思想


8.4.2剪枝步骤


8.4.3剪枝示例


8.4.4小结


8.5CART生成与剪枝算法


8.5.1CART算法


8.5.2分类树生成算法


8.5.3分类树生成示例


8.5.4分类树剪枝步骤


8.5.5分类树剪枝示例


8.5.6小结


8.6集成学习


8.6.1集成学习思想


8.6.2集成学习种类


8.6.3Bagging集成学习


8.6.4Boosting集成学习


8.6.5Stacking集成学习


8.6.6小结


8.7随机森林


8.7.1随机森林原理


8.7.2随机森林示例代码


8.7.3特征重要性评估


8.7.4小结


8.8泰坦尼克号生还预测


8.8.1读取数据集


8.8.2特征选择


8.8.3缺失值填充


8.8.4特征值转换


8.8.5乘客生还预测


8.8.6小结


第9章支持向量机


9.1SVM思想


9.2SVM原理


9.2.1超平面的表达


9.2.2函数间隔


9.2.3几何间隔


9.2.4*大间隔分类器


9.2.5函数间隔的性质


9.2.6小结


9.3SVM示例代码与线性不可分


9.3.1线性SVM示例代码


9.3.2从线性不可分谈起


9.3.3将低维特征映射到高维空间


9.3.4SVM中的核技巧


9.3.5从高维到无穷维


9.3.6常见核函数


9.3.7小结


9.4SVM中的软间隔


9.4.1软间隔定义


9.4.2*大化软间隔


9.4.3SVM软间隔示例代码


9.4.4小结


9.5拉格朗日乘数法


9.5.1条件极值


9.5.2求解条件极值


9.5.3小结


9.6对偶性与KKT条件


9.6.1广义拉格朗日乘数法


9.6.2原始优化问题


9.6.3对偶优化问题


9.6.4KKT条件


9.6.5计算示例


9.6.6小结


9.7SVM优化问题


9.7.1构造硬间隔广义拉格朗日函数


9.7.2硬间隔求解计算示例


9.7.3构造软间隔广义拉格朗日函数


9.7.4软间隔中的支持向量


9.7.5小结


9.8SMO算法


9.8.1坐标上升算法


9.8.2SMO算法思想


9.8.3SMO算法原理


9.8.4偏置b求解


9.8.5SVM算法求解示例


9.8.6小结


第10章聚类


10.1聚类算法的思想


10.2kmeans聚类算法


10.2.1算法原理


10.2.2k值选取


10.2.3kmeans聚类示例代码


10.2.4小结


10.3kmeans算法求解


10.3.1kmeans算法目标函数


10.3.2求解簇中心矩阵Z


10.3.3求解簇分配矩阵U


10.3.4小结


10.4从零实现kmeans聚类算法


10.4.1随机初始化簇中心


10.4.2簇分配矩阵实现


10.4.3簇中心矩阵实现


10.4.4聚类算法实现


10.4.5小结


10.5kmeans++聚类算法


10.5.1算法原理


10.5.2计算示例


10.5.3从零实现kmeans++聚类算法


10.5.4小结


10.6聚类评估指标


10.6.1聚类纯度


10.6.2兰德系数与F值


10.6.3调整兰德系数


10.6.4聚类指标示例代码


10.6.5小结


10.7加权kmeans聚类算法


10.7.1引例


10.7.2加权kmeans聚类算法思想


10.7.3加权kmeans聚类算法原理


10.7.4加权kmeans聚类算法迭代公式


10.7.5从零实现加权kmeans聚类算法


10.7.6参数求解


10.7.7小结


展开全部

跟我一起学机器学习 作者简介

王成,华东交通大学计算机应用技术硕士毕业,机器学习领域CSDN与知乎专栏常驻作者。 黄晓辉,哈尔滨工业大学计算机科学与技术博士毕业,华东交通大学信息工程学院副教授,南洋理工大学计算机科学与工程学院访问学者。长期从事深度学习、机器学习相关领域的研究工作,主持过多项国家和省级课题,并获得过多项研究专利。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服