超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
沃克流行几何学:英文

沃克流行几何学:英文

出版社:哈尔滨工业大学出版社出版时间:2020-11-01
开本: 24cm 页数: 185页
本类榜单:自然科学销量榜
中 图 价:¥36.0(6.2折) 定价  ¥58.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

沃克流行几何学:英文 版权信息

  • ISBN:9787560391625
  • 条形码:9787560391625 ; 978-7-5603-9162-5
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

沃克流行几何学:英文 内容简介

本书是一本引进版权的微分几何英文专著。中文书名可译为《沃克流行几何学》。 本书的作者有五位。 *位是:米格尔.布拉索斯-巴斯克斯。西班牙拉科鲁尼亚大学数学系教授。 第二位是:爱德华多.加西亚-里奥.数学教授,圣地亚哥.德.孔波斯特拉大学(西班牙)数学研究所的成员。他于1992年从圣地亚哥.德.孔波斯特拉大学获得博士学位,是《几何分析杂志》编委会成员,他的研究方向是微分几何和数学物理。 第三位是:彼得.吉尔凯.俄勒冈大学数学系教授,理论科学研究所的成员,美国数学学会会员,《数学、微分几何与应用》和《几何分析杂志》的编委会成员。1972年,在尼伦伯格的指导下,他从哈佛大学获得博士学位,他的研究方向是微分几何、椭圆型偏微分方程和代数拓扑学,他发表了250多篇研究论文和多本著作。 第四位是:斯坦纳.尼克塞维奇.塞尔维亚贝尔格莱德大学数学院教授。 第五位是:拉蒙.巴斯克斯-洛伦佐.西班牙圣地亚哥.德.孔波斯特拉大学教授数学学院教授。

沃克流行几何学:英文 目录

Preface 1 Basic Algebraic Notions 1.1 Introduction 1.2 A Historical Perspective in the Algebraic Context 1.3 Algebraic Preliminaries 1.3.1 Jordan Normal Form 1.3.2 Indefinite Geometry 1.3.3 Algebraic Curvature Tensors 1.3.4 Hermitian and Para-Hermitian Geometry 1.3.5 The Jacobi and Skew Symmetric Curvature Operators 1.3.6 Sectional, Ricci, Scalar, and Weyl Curvature 1.3.7 Curvature Decompositions 1.3.8 Self-Duality and Anti-Self-Duality Conditions 1.4 Spectral Geometry of the Curvature Operator 1.4.1 Osserman and Conformally Osserman Models 1.4.2 Osserman Curvature Models in Signature (2, 2) 1.4.3 Ivanov-Petrova Curvature Models 1.4.4 Osserman Ivanov-Petrova Curvature Models 1.4.5 Commuting Curvature Models 2 Basic Geometrical Notions 2.1 Introduction 2.2 History 2.3 Basic Manifold Theory 2.3.1 The Tangent Bundle, Lie Bracket, and Lie Groups 2.3.2 The Cotangent Bundle and Symplectic Geometry 2.3.3 Connections, Curvature, Geodesics, and Holonomy 2.4 Pseudo-Riemannian Geometry 2.4.1 The Levi-Civita Connection 2.4.2 Associated Natural Operators 2.4.3 Weyl Scalar Invariants 2.4.4 Null Distributions 2.4.5 Pseudo-Riemannian Holonomy 2.5 Other Geometric Structures 2.5.1 Pseudo-Hermitian and Para-Hermitian Structures 2.5.2 Hyper-Para-Hermitian Structures 2.5.3 Geometric Realizations 2.5.4 Homogeneous Spaces, and Curvature Homogeneity 2.5.5 Technical Results in Differential Equations 3 Walker Structures 3.1 Introduction 3.2 Historical Development 3.3 Walker Coordinates 3.4 Examples of Walker Manifolds 3.4.1 Hypersurfaces with Nilpotent Shape Operators 3.4.2 Locally Conformally Flat Metrics with Nilpotent Ricci Operator 3.4.3 Degenerate Pseudo-Riemannian Homogeneous Structures 3.4.4 Para-Kaehler Geometry 3.4.5 Two-step Nilpotent Lie Groups with Degenerate Center 3.4.6 Conformally Symmetric Pseudo-Riemannian Metrics 3.5 Riemannian Extensions 3.5.1 The Affine Category 3.5.2 Twisted Riemannian Extensions Defined by Flat Connections 3.5.3 Modified Riemannian Extensions Defined by Flat Connections 3.5.4 Nilpotent Walker Manifolds 3.5.5 Osserman Riemannian Extensions 3.5.6 Ivanov-Petrova Riemannian Extensions 4 Three-Dimensional Lorentzian Walker Manifolds 4.1 Introduction 4.2 History 4.3 Three Dimensional Walker Geometry 4.3.1 Adapted Coordinates 4.3.2 The Jordan Normal Form of the Ricci Operator 4.3.3 Christoffel Symbols, Curvature, and the Ricci Tensor 4.3.4 Locally Symmetric Walker Manifolds 4.3.5 Einstein-Like Manifolds 4.3.6 The Spectral Geometry of the Curvature Tensor 4.3.7 Curvature Commutativity Properties 4.4 Local geometry of Walker manifolds with τ≠ 0 4.4.1 Foliated Walker Manifolds 4.4.2 Contact Walker Manifolds 4.5 Strict Walker Manifolds 4.6 Three dimensional homogeneous Lorentzian manifolds 4.6.1 Three dimensional Lie groups and Lie algebras 4.7 Curvature Homogeneous Lorentzian Manifolds 4.7.1 Diagonalizable Ricci Operator 4.7.2 Type II Ricci Operator 5 Four-Dimensional Walker Manifolds 5.1 Introduction 5.2 History 5.3 Four-Dimensional Walker Manifolds 5.4 Almost Para-Hermitian Geometry 5.4.1 Isotropic Almost Para-Hermitian Structures 5.4.2 Characteristic Classes 5.4.3 Self-Dual Walker Manifolds 6 The Spectral Geometry of the Curvature Tensor 6.1 Introduction 6.2 History 6.3 Four-Dimensional Osserman Metrics 6.3.1 Osserman Metrics with DiagonalizableJacobi Operator 6.3.2 Osserman Walker Type II Metrics 6.4 Osserman and Ivanov-Petrova Metrics 6.5 Riemannian Extensions of Affine Surfaces 6.5.1 Affine Surfaces with Skew Symmetric Ricci Tensor 6.5.2 affine Surfaces with Symmetric and Degenerate Ricci Tensor 6.5.3 Riemannian Extensions with Commuting Curvature Operators 6.5.4 Other Examples with Commuting Curvature Operators 7 Hermitian Geometry 7.1 Introduction 7.2 History 7.3 Almost Hermitian Geometry of Walker Manifolds 7.3.1 The Proper Almost Hermitian Structure of a Walker Manifold 7.3.2 Proper Almost Hyper-Para-Hermitian Structures 7.4 Hermitian Walker Manifolds of Dimension Four 7.4.1 Proper Hermitian Walker Structures 7.4.2 Locally Conformally Kaehler Structures 7.5 Almost Kaehler Walker Four-Dimensional Manifolds 8 Special Walker Manifolds 8.1 Introduction 8.2 History 8.3 Curvature Commuting Conditions 8.4 Curvature Homogeneous Strict Walker Manifolds Bibliography Glossary Biography Index 编辑手记
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服