超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
微积分(下英文版21世纪高等院校双一流建设规划教材)

微积分(下英文版21世纪高等院校双一流建设规划教材)

出版社:东南大学出版社出版时间:2020-12-01
开本: 16开 页数: 307
本类榜单:自然科学销量榜
中 图 价:¥36.0(7.2折) 定价  ¥50.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

微积分(下英文版21世纪高等院校双一流建设规划教材) 版权信息

  • ISBN:9787564192310
  • 条形码:9787564192310 ; 978-7-5641-9231-0
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

微积分(下英文版21世纪高等院校双一流建设规划教材) 内容简介

本书是根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求,并结合东南大学多年教学改革实践经验编写的全英文教材。全书分为上、下两册,此为下册,主要包括级数、向量代数与空间解析几何、多元函数微分学、多元函数积分学、向量场的积分等五部分。本书对基本概念的叙述清晰准确,对基本理论的论述简明易懂,例题习题的选配典型多样,强调基本运算能力的培养及理论的实际应用。本教材的内容是工科学生**大学数学知识。利用英文编写更有利于学生提高与国际同行专家交流的能力。

微积分(下英文版21世纪高等院校双一流建设规划教材) 目录

Chapter 5 Infinite Series 5.1 Convergent Series 5.1.1 Concepts of Convergent Series 5.1.2 Properties of Convergent Series 5.2 Tests of Convergence and Divergence 5.2.1 Tests for Positive Series 5.2.2 Alternating Series 5.2.3 Absolute and Conditional Convergence 5.3 Tests for Improper Integrals 5.3.1 Improper Integrals: Infinite Limits of Integration 5.3.2 Improper Integrals.Infinite Integrands 5.3.3 The Gamma Function 5.4 Infinite Series o{ Functions 5.4.1 General Definition 5.4 .2 Uniform Convergence of Series 5.4.3 Properties of Uniformly Convergent Functional Series 5.5 Power Series 5.5 .I The Radius and Interval of Convergence 5.5.2 Properties of Power Series 5.6 Expanding Functions into Power Series 5.7 Fourier's Series 5.7.1 The Concept of Fourier's Series 5.7.2 Fourier's Sine and Cosine Series 5.7.3 Expending Functions with Arbitrary Period Chapter Review Exercise Chapter 6 Vectors and Analytic Geometry in Space 6.1 Vectors and Their Linear Operations 6.1.1 The Concept of Vector 6.1.2 Linear Operations on Vectors 6.1.3 Dot Product and Gross Product 6.2 Operations on Vectors in Cartesian Coordinates in Three Space 6.2.1 Cartesian Coordinates in Three Space 6.2.2 Operations on Vectors in Cartesian Coordinates 6.3 Planes and Lines in Space 6.3.1 Equations for Plane 6.3.2 Lines 6.3.3 Some Problems Related to Lines and Planes 6.4 Curves and Surfaces in Space 6.4.1 Sphere and Cylinder 6.4.2 Curves in Space 6,4.3 Cone 6.4.4 Surfaces of Revolution 6.4.5 Quadric Surfaces 6.5 Vector-Valued Functions 6.5.1 Limit of a Vector-Valued Function 6.5.2 Derivative of a Vector-Valued Function 6.5.3 Integral of a Vector-Valued Function 6.5.4 Curvilinear Motion 6.5.5 Curvature Chapter Review Exercise Chapter 7 Multivariate Functions and Partial Derivatives 7.1 Functions of Several Variables 7.2 Limits and Continuity 7.3 Partial Derivative 7.3.1 Definitions of Partial Derivative 7.3.2 Geometric Interpretation of Partial Derivative 7.3.3 Second Order Partial Derivatives 7.4 Differentials 7.5 Rules for Finding Partial Derivative 7.5.1 The Chain Rule 7.5.2 Implicit Differentiation 7.6 Directional Derivatives and Gradient Vectors 7.6.1 Directional Derivatives 7.6.2 Gradient Vectors 7.7 Geometric Applications of Differentiation of Functions of Several Variables 7.7.1 Tangent Line and Normal Plane to a Curve 7.7.2 Tangent Plane and Normal Line to a Surface 7.8 Taylor's Formula for Functions of Two Variables and Extreme Values 7.8.1 Taylor's Formula for Functions of Two Variables 7.8.2 Extreme Values 7.8.3 Absolute Maxima and Minima on Closed Bounded Regions 7.8.4 Lagrange Multipliers Chapter Review Exercise Chapter 8 Multiple Integrals 8.1 Concept and Properties of Integrals 8.1.1 Concept of the Multiple Integrals 8.1.2 Properties of the Multiple Integrals 8.2 Evaluation of Double Integrals 8.2.1 Double Integrals in Rectangular Coordinates 8.2.2 Double Integrals in Polar Coordinates 8.2.3 Substitutions in Double Integrals 8.3 Evaluation of Triple Integrals 8.3.1 Triple Integrals in Rectangular Coordinates 8.3.2 Triple Integrals in Cylindrical and Spherical Coordinates 8.4 Line Integrals with Respect to Arc Length 8.5 Surface Integrals with Respect to Area 8.5.1 Surface Area 8.5.2 Evaluation of Surface Integrals with Respect to Area 8.6 Application for the Integrals Chapter Review Exercise Chapter 9 Integration in Vector Fields 9.1 Vector Fields 9.2 Line Integrals of the Second Type 9.2.1 The Concept and Properties of the Line Integrals of the Second Type 9.2.2 Calculation 9.2.3 The Relation between the Two Line Integrals 9.3 Green's Theorem in the Plane 9.3.1 Green's Theorem 9.3.2 Path Independence for the Plane Case 9.4 The Surface Integral for Flux 9.4.1 Orientation 9.4.2 The Conception of the Surface Integral for Flux 9.4.3 Calculation 9.4.4 The Relation between the Two Surface Integrals 9.5 Gauss's Divergence Theorem 9.6 Stokes's Theorem Chapter Review Exercise Solutions to Selected Problem
展开全部

微积分(下英文版21世纪高等院校双一流建设规划教材) 作者简介

陈文彦,东南大学数学学院教授、博士、硕士生导师。主要研究方向:非线性偏微分方程,近五年来,发表SCI论文10余篇。主持完成1项国家自然科学基金(2007.1-2009.12)。参与完成国家自然科学基金和江苏省自然科学基金各1项。2009年参加的几类非线性偏微分方程的研究获教育部颁发的国家自然科学奖二等奖(排名第四),2013年获江苏省级教学成果一等奖(排名第二)。主讲高等数学、数学物理方程、拓扑学、复变函数和线性偏微分方程等课程。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服