扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
Measure theory(测度论) 版权信息
- ISBN:9787519224134
- 条形码:9787519224134 ; 978-7-5192-2413-4
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
Measure theory(测度论) 内容简介
《测度论(第2版 影印版 英文版)》是一部为初学者提供学习测度论的入门书籍,综合性强,清晰易懂。本版与第1版相比,篇幅扩展100页,并新增概率一章。《测度论(第2版 影印版 英文版)》全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前几章讲述了抽象测度和积分;后一章讲述微分知识,包括Rd上变量的处理。每章末附有代表性的习题,从常规题型到扩展训练都有涉及,较高难度的习题附有提示。
Measure theory(测度论) 目录
Introduction
1 Measures
1.1 Algebras and Sigma-Algebras
1.2 Measures
1.3 Outer Measures
1.4 Lebesgue Measure
1.5 Completeness and Regularity
1.6 Dynkin Classes
2 Functions and Integrals
2.1 Measurable Functions
2.2 Properties That Hold Almost Everywhere
2.3 The Integral
2.4 Limit Theorems
2.5 The Riemann Integral
2.6 Measurable Functions Again, Complex-Valued Functions, and Image Measures
3 Convergence
3.1 Modes of Convergence
3.2 Normed Spaces
3.3 Definition of LP and LP
3.4 Properties of LP and LP
3.5 Dual Spaces
4 Signed and Complex Measures
4.1 Signed and Complex Measures
4.2 Absolute Continuity
4.3 Singularity
4.4 Functions of Finite Variation
4.5 The Duals of the LP Spaces
5 Product Measures
5.1 Constructions
5.2 Fubini's Theorem
5.3 Applications
6 Differentiation
6.1 Change of Variable in Rd
6.2 Differentiation of Measures
6.3 Differentiation of Functions
7 Measures on Locally Compact Spaces
7.1 Locally Compact Spaces
7.2 The Riesz Representation Theorem
7.3 Signed and Complex Measures; Duality
7.4 Additional Properties of Regular Measures
7.5 The ?*-Measurable Sets and the Dual ofL1
7.6 Products of Locally Compact Spaces
7.7 The Daniell-Stone Integral
8 Polish Spaces and Analytic Sets
8.1 Polish Spaces
8.2 Analytic Sets
8.3 The Separation Theorem and Its Consequences
8.4 The Measurability of Analytic Sets
8.5 Cross Sections
8.6 Standard, Analytic, Lusin, and Souslin Spaces
9 Haar Measure
9.1 Topological Groups
9.2 The Existence and Uniqueness of Haar Measure
9.3 Properties of Haar Measure
9.4 The Algebras L1 (G) and M(G)
10 Probability
10.1 Basics
10.2 Laws of Large Numbers
10.3 Convergence in Distribution and the Central Limit Theorem
10.4 Conditional Distributions and Martingales
10.5 Brownian Motion
10.6 Construction of Probability Measures
ANotation and Set Theory
BAlgebra and Basic Facts About R and C
CCalculus and Topology in Rd
DTopological Spaces and Metric Spaces
EThe Bochner Integral
FLiftings
GThe Banach-Tarski Paradox
HThe Henstock-Kurzweii and McShane Integrals
References
Index of notation
Index
1 Measures
1.1 Algebras and Sigma-Algebras
1.2 Measures
1.3 Outer Measures
1.4 Lebesgue Measure
1.5 Completeness and Regularity
1.6 Dynkin Classes
2 Functions and Integrals
2.1 Measurable Functions
2.2 Properties That Hold Almost Everywhere
2.3 The Integral
2.4 Limit Theorems
2.5 The Riemann Integral
2.6 Measurable Functions Again, Complex-Valued Functions, and Image Measures
3 Convergence
3.1 Modes of Convergence
3.2 Normed Spaces
3.3 Definition of LP and LP
3.4 Properties of LP and LP
3.5 Dual Spaces
4 Signed and Complex Measures
4.1 Signed and Complex Measures
4.2 Absolute Continuity
4.3 Singularity
4.4 Functions of Finite Variation
4.5 The Duals of the LP Spaces
5 Product Measures
5.1 Constructions
5.2 Fubini's Theorem
5.3 Applications
6 Differentiation
6.1 Change of Variable in Rd
6.2 Differentiation of Measures
6.3 Differentiation of Functions
7 Measures on Locally Compact Spaces
7.1 Locally Compact Spaces
7.2 The Riesz Representation Theorem
7.3 Signed and Complex Measures; Duality
7.4 Additional Properties of Regular Measures
7.5 The ?*-Measurable Sets and the Dual ofL1
7.6 Products of Locally Compact Spaces
7.7 The Daniell-Stone Integral
8 Polish Spaces and Analytic Sets
8.1 Polish Spaces
8.2 Analytic Sets
8.3 The Separation Theorem and Its Consequences
8.4 The Measurability of Analytic Sets
8.5 Cross Sections
8.6 Standard, Analytic, Lusin, and Souslin Spaces
9 Haar Measure
9.1 Topological Groups
9.2 The Existence and Uniqueness of Haar Measure
9.3 Properties of Haar Measure
9.4 The Algebras L1 (G) and M(G)
10 Probability
10.1 Basics
10.2 Laws of Large Numbers
10.3 Convergence in Distribution and the Central Limit Theorem
10.4 Conditional Distributions and Martingales
10.5 Brownian Motion
10.6 Construction of Probability Measures
ANotation and Set Theory
BAlgebra and Basic Facts About R and C
CCalculus and Topology in Rd
DTopological Spaces and Metric Spaces
EThe Bochner Integral
FLiftings
GThe Banach-Tarski Paradox
HThe Henstock-Kurzweii and McShane Integrals
References
Index of notation
Index
展开全部
书友推荐
- >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
【精装绘本】画给孩子的中国神话
【精装绘本】画给孩子的中国神话
¥19.3¥55.0 - >
中国历史的瞬间
中国历史的瞬间
¥16.7¥38.0 - >
巴金-再思录
巴金-再思录
¥14.7¥46.0 - >
有舍有得是人生
有舍有得是人生
¥17.1¥45.0 - >
唐代进士录
唐代进士录
¥25.5¥39.8 - >
经典常谈
经典常谈
¥12.7¥39.8 - >
上帝之肋:男人的真实旅程
上帝之肋:男人的真实旅程
¥19.3¥35.0
本类畅销
-
怎样解题
¥17.2¥29 -
自然哲学的数学原理-拟定经典力学世界图景的旷世巨典-全新修订本
¥39.4¥58 -
数学-应用与思考
¥16.1¥32.8 -
数学万花筒 修订版
¥32.4¥49 -
数学万花筒-夏尔摩斯探案集-3
¥30.1¥39 -
新型元启发式算法及其应用
¥77.4¥98