扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
气候文明史
-
>
南极100天
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
声音简史
Measure theory(测度论) 版权信息
- ISBN:9787519224134
- 条形码:9787519224134 ; 978-7-5192-2413-4
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
Measure theory(测度论) 内容简介
《测度论(第2版 影印版 英文版)》是一部为初学者提供学习测度论的入门书籍,综合性强,清晰易懂。本版与第1版相比,篇幅扩展100页,并新增概率一章。《测度论(第2版 影印版 英文版)》全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前几章讲述了抽象测度和积分;后一章讲述微分知识,包括Rd上变量的处理。每章末附有代表性的习题,从常规题型到扩展训练都有涉及,较高难度的习题附有提示。
Measure theory(测度论) 目录
Introduction
1 Measures
1.1 Algebras and Sigma-Algebras
1.2 Measures
1.3 Outer Measures
1.4 Lebesgue Measure
1.5 Completeness and Regularity
1.6 Dynkin Classes
2 Functions and Integrals
2.1 Measurable Functions
2.2 Properties That Hold Almost Everywhere
2.3 The Integral
2.4 Limit Theorems
2.5 The Riemann Integral
2.6 Measurable Functions Again, Complex-Valued Functions, and Image Measures
3 Convergence
3.1 Modes of Convergence
3.2 Normed Spaces
3.3 Definition of LP and LP
3.4 Properties of LP and LP
3.5 Dual Spaces
4 Signed and Complex Measures
4.1 Signed and Complex Measures
4.2 Absolute Continuity
4.3 Singularity
4.4 Functions of Finite Variation
4.5 The Duals of the LP Spaces
5 Product Measures
5.1 Constructions
5.2 Fubini's Theorem
5.3 Applications
6 Differentiation
6.1 Change of Variable in Rd
6.2 Differentiation of Measures
6.3 Differentiation of Functions
7 Measures on Locally Compact Spaces
7.1 Locally Compact Spaces
7.2 The Riesz Representation Theorem
7.3 Signed and Complex Measures; Duality
7.4 Additional Properties of Regular Measures
7.5 The ?*-Measurable Sets and the Dual ofL1
7.6 Products of Locally Compact Spaces
7.7 The Daniell-Stone Integral
8 Polish Spaces and Analytic Sets
8.1 Polish Spaces
8.2 Analytic Sets
8.3 The Separation Theorem and Its Consequences
8.4 The Measurability of Analytic Sets
8.5 Cross Sections
8.6 Standard, Analytic, Lusin, and Souslin Spaces
9 Haar Measure
9.1 Topological Groups
9.2 The Existence and Uniqueness of Haar Measure
9.3 Properties of Haar Measure
9.4 The Algebras L1 (G) and M(G)
10 Probability
10.1 Basics
10.2 Laws of Large Numbers
10.3 Convergence in Distribution and the Central Limit Theorem
10.4 Conditional Distributions and Martingales
10.5 Brownian Motion
10.6 Construction of Probability Measures
ANotation and Set Theory
BAlgebra and Basic Facts About R and C
CCalculus and Topology in Rd
DTopological Spaces and Metric Spaces
EThe Bochner Integral
FLiftings
GThe Banach-Tarski Paradox
HThe Henstock-Kurzweii and McShane Integrals
References
Index of notation
Index
1 Measures
1.1 Algebras and Sigma-Algebras
1.2 Measures
1.3 Outer Measures
1.4 Lebesgue Measure
1.5 Completeness and Regularity
1.6 Dynkin Classes
2 Functions and Integrals
2.1 Measurable Functions
2.2 Properties That Hold Almost Everywhere
2.3 The Integral
2.4 Limit Theorems
2.5 The Riemann Integral
2.6 Measurable Functions Again, Complex-Valued Functions, and Image Measures
3 Convergence
3.1 Modes of Convergence
3.2 Normed Spaces
3.3 Definition of LP and LP
3.4 Properties of LP and LP
3.5 Dual Spaces
4 Signed and Complex Measures
4.1 Signed and Complex Measures
4.2 Absolute Continuity
4.3 Singularity
4.4 Functions of Finite Variation
4.5 The Duals of the LP Spaces
5 Product Measures
5.1 Constructions
5.2 Fubini's Theorem
5.3 Applications
6 Differentiation
6.1 Change of Variable in Rd
6.2 Differentiation of Measures
6.3 Differentiation of Functions
7 Measures on Locally Compact Spaces
7.1 Locally Compact Spaces
7.2 The Riesz Representation Theorem
7.3 Signed and Complex Measures; Duality
7.4 Additional Properties of Regular Measures
7.5 The ?*-Measurable Sets and the Dual ofL1
7.6 Products of Locally Compact Spaces
7.7 The Daniell-Stone Integral
8 Polish Spaces and Analytic Sets
8.1 Polish Spaces
8.2 Analytic Sets
8.3 The Separation Theorem and Its Consequences
8.4 The Measurability of Analytic Sets
8.5 Cross Sections
8.6 Standard, Analytic, Lusin, and Souslin Spaces
9 Haar Measure
9.1 Topological Groups
9.2 The Existence and Uniqueness of Haar Measure
9.3 Properties of Haar Measure
9.4 The Algebras L1 (G) and M(G)
10 Probability
10.1 Basics
10.2 Laws of Large Numbers
10.3 Convergence in Distribution and the Central Limit Theorem
10.4 Conditional Distributions and Martingales
10.5 Brownian Motion
10.6 Construction of Probability Measures
ANotation and Set Theory
BAlgebra and Basic Facts About R and C
CCalculus and Topology in Rd
DTopological Spaces and Metric Spaces
EThe Bochner Integral
FLiftings
GThe Banach-Tarski Paradox
HThe Henstock-Kurzweii and McShane Integrals
References
Index of notation
Index
展开全部
书友推荐
- >
史学评论
史学评论
¥14.4¥42.0 - >
姑妈的宝刀
姑妈的宝刀
¥15.7¥30.0 - >
罗曼·罗兰读书随笔-精装
罗曼·罗兰读书随笔-精装
¥32.9¥58.0 - >
随园食单
随园食单
¥16.4¥48.0 - >
我从未如此眷恋人间
我从未如此眷恋人间
¥16.9¥49.8 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
经典常谈
经典常谈
¥16.7¥39.8 - >
朝闻道
朝闻道
¥14.8¥23.8
本类畅销
-
普林斯顿概率论读本
¥87.6¥139 -
TUKEY统计学讲义:数据分析与回归
¥79.7¥119 -
TUKEY统计学讲义:探索性数据分析
¥86.4¥129 -
怎样解题
¥17.8¥29 -
不良情绪应急处理包--孤独感
¥12.9¥30 -
不良情绪应急处理包--精神内耗
¥12.9¥30
浏览历史
中国文化知识读本:古代文化史话--七?夕
¥10.5¥29.8可见的学习与学习科学
¥50.0¥72.0