书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
TensorFlow深度学习

TensorFlow深度学习

出版社:东南大学出版社出版时间:2019-05-01
开本: 24cm 页数: 15,458页
中 图 价:¥72.4(6.7折) 定价  ¥108.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

TensorFlow深度学习 版权信息

  • ISBN:9787564183264
  • 条形码:9787564183264 ; 978-7-5641-8326-4
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

TensorFlow深度学习 本书特色

TensorFlow是谷歌研发的人工智能学习系统,是一个用于数值计算的开源软件库。本书以基础加实践相结合的形式,详细介绍了TensorFlow深度学习算法原理及编程技巧。通读全书,读者不仅可以系统了解深度学习的相关知识,还能对使用TensorFlow进行深度学习算法设计的过程有更深入的理解。

TensorFlow深度学习 内容简介

TensorFlow是谷歌研发的人工智能学习系统,是一个用于数值计算的开源软件库。本书以基础加实践相结合的形式,详细介绍了TensorFlow深度学习算法原理及编程技巧。通读全书,读者不仅可以系统了解深度学习的相关知识,还能对使用TensorFlow进行深度学习算法设计的过程有更深入的理解。

TensorFlow深度学习 目录

Preface Chapter 1: Getting Started with Deep Learning A soft introduction to machine learning Supervised learning Unbalanced data Unsupervised learning Reinforcement learning What is deep learning? Artificial neural networks The biological neurons The artificial neuron How does an ANN learn? ANNs and the backpropagation algorithm Weight optimization Stochastic gradient descent Neural network architectures Deep Neural Networks (DNNs) Multilayer perceptron Deep Belief Networks (DBNs) Convolutional Neural Networks (CNNs) AutoEncoders Recurrent Neural Networks (RNNs) Emergent architectures Deep learning frameworks Summary Chapter 2: A First Look at TensorFlow A general overview of TensorFlow What's new in TensorFlow vl.6? Nvidia GPU support optimized Introducing TensorFlow Lite Eager execution Optimized Accelerated Linear Algebra (XLA) Installing and configuring TensorFlow TensorFlow computational graph TensorFlow code structure Eager execution with TensorFIow Data model in TensorFlow Tensor Rank and shape Data type Variables Fetches Feeds and placeholders Visualizing computations through TensorBoard How does TensorBoard work? Linear regression and beyond Linear regression revisited for a real dataset Summary Chapter 3: Feed-Forward Neural Networks with TensorFIow Feed-forward neural networks (FFNNs) Feed-forward and backpropagation Weights and biases Activation functions Using sigmoid Using tanh Using ReLU Using softmax Implementing a feed-forward neural network Exploring the MNIST dataset Softmax classifier Implementing a multilayer perceptron (MLP) Training an MLP Using MLPs Dataset description Preprocessing A TensorFIow implementation of MLP for client-subscription assessment Chapter 4: Convolutional Neural Networks Chapter 5: Optimizing TensorFIow Autoencoders Chapter 6: Recurrent Neural Networks Chapter 7: Heterogeneous and Distributed Computing Chapter 8: Advanced TensorFIow Programming Chapter 9: Recommendation Systems Using Factorization Machines Chapter 10: Reinforcement Learning Other Books You May Enjoy Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服