图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
数论-第1卷-(影印版)

数论-第1卷-(影印版)

出版社:世界图书出版公司出版时间:2019-03-01
开本: 16开 页数: 650
本类榜单:自然科学销量榜
中 图 价:¥153.9(8.6折) 定价  ¥179.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

数论-第1卷-(影印版) 版权信息

  • ISBN:9787519255299
  • 条形码:9787519255299 ; 978-7-5192-5529-9
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

数论-第1卷-(影印版) 本书特色

《数论》分为2卷,是Springer“数学研究生教材”丛书之239和240卷,是一套面向研究生的数论教程,主旨是全面介绍丢番图方程的解,包括多项式方程、有理数和代数数论等,其中特别强调了算术代数几何的现代理论。全书各章共有530例习题,部分习题有提示。

数论-第1卷-(影印版) 内容简介

《数论》分为2卷,是Springer“数学研究生教材”丛书之239和240卷,是一套面向研究生的数论教程,主旨是全面介绍丢番图方程的解,包括多项式方程、有理数和代数数论等,其中特别强调了算术代数几何的现代理论。全书各章共有530例习题,部分习题有提示。 本书是其中的第1卷,由H.科恩著。共分2部分8章,内容包括工具、丢番图方程。

数论-第1卷-(影印版) 目录

Volume I Preface 1. Introduction to Diophantine Equations 1.1 Introduction 1.1.1 Examples of Diophantine Problems 1.1.2 Local Methods 1.1.3 Dimensions 1.2 Exercises for Chapter 1 Part I. Tools 2. Abelian Groups, Lattices, and Finite Fields 2.1 Finitely Generated Abelian Groups 2.1.1 Basic Results 2.1.2 Description of Subgroups 2.1.3 Characters of Finite Abelian Groups 2.1.4 The Groups (Z/mZ)* 2.1.5 Dirichlet Characters 2.1.6 Gauss Sums 2.2 The Quadratic Reciprocity Law 2.2.1 The Basic Quadratic Reciprocity Law 2.2.2 Consequences of the Basic Quadratic Reciprocity Law 2.2.3 Gauss's Lemma and Quadratic Reciprocity 2.2.4 Real Primitive Characters 2.2.5 The Sign of the Quadratic Gauss Sum 2.3 Lattices and the Geometry of Numbers 2.3.1 Definitions 2.3.2 Hermite's Inequality 2.3.3 LLL-Reduced Bases 2.3.4 The LLL Algorithms 2.3.5 Approximation of Linear Forms 2.3.6 Minkowski's Convex Body Theorem 2.4 Basic Properties of Finite Fields 2.4.1 General Properties of Finite Fields 2.4.2 Galois Theory of Finite Fields 2.4.3 Polynomials over Finite Fields 2.5 Bounds for the Number of Solutions in Finite Fields 2.5.1 The Chevalley-Warning Theorem 2.5.2 Gauss Sums for Finite Fields 2.5.3 Jacobi Sums for Finite Fields 2.5.4 The Jacobi Sums J(x1,x2) 2.5.5 The Number of Solutions of Diagonal Equations 2.5.6 The Well Bounds 2.5.7 The Weil Conjectures (Deligne's Theorem) 2.6 Exercises for Chapter 2 3. Basic Algebraic Number Theory 3.1 Field-Theoretic Algebraic Number Theory 3.1.1 Galois Theory 3.1.2 Number Fields 3.1.3 Examples 3.1.4 Characteristic Polynomial, Norm, Trace 3.1.5 Noether's Lemma 3.1.6 The Basic Theorem of Kummer Theory 3.1.7 Examples of the Use of Kummer Theory 3.1.8 Artin-Schreier Theory 3.2 The Normal Basis Theorem 3.2.1 Linear Independence and Hilbert's Theorem 90 3.2.2 The Normal Basis Theorem in the Cyclic Case 3.2.3 Additive Polynomials 3.2.4 Algebraic Independence of Homomorphisms 3.2.5 The Normal Basis Theorem 3.3 Ring-Theoretic Algebraic Number Theory 3.3.1 Gauss's Lemma on Polynomials 3.3.2 Algebraic Integers 3.3.3 Ring of Integers and Discriminant 3.3.4 Ideals and Units 3.3.5 Decomposition of Primes and Ramification 3.3.6 Galois Properties of Prime Decomposition 3.4 Quadratic Fields 3.4.1 Field-Theoretic and Basic Ring-Theoretic Properties 3.4.2 Results and Conjectures on Class and Unit Groups 3.5 Cyclotomic Fields 3.5.1 Cyclotomic Polynomials 3.5.2 Field-Theoretic Properties of Q(Sn) 3.5.3 Ring-Theoretic Properties 3.5.4 The Totally Real Subfield of Q(Spk ) …… 4. p-adic Fields 5. Quadratic Forms and Local-Global Principles Part II. Diophantine Equations 6. Some Diophantine Equations 7. Elliptic Curves 8. Diophantine Aspects of Elliptic Curves Bibliography Index of Notation Index of Names General Index
展开全部

数论-第1卷-(影印版) 作者简介

这套经典研究生教材的作者作者Henri Cohen(H.科恩,法国), 是法国Institue de Mathématiques de Bordeaux的教授。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服