书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
经典自守形式专题英文版

经典自守形式专题英文版

作者:HenrykIwaniec
出版社:高等教育出版社出版时间:2017-06-01
开本: 其他 页数: 259
本类榜单:自然科学销量榜
中 图 价:¥108.0(8.0折) 定价  ¥135.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

经典自守形式专题英文版 版权信息

  • ISBN:9787040469134
  • 条形码:9787040469134 ; 978-7-04-046913-4
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

经典自守形式专题英文版 内容简介

本书的主要目的是向读者提供多种视角来了解自守形式理论,除了对理论中熟知专题做详细且常常是非标准的阐述外(重点放在分析方面),还特别关注诸如theta函数以及以二次型的整数表示这些课题。 作者讨论了自守形式理论中的许多重要专题,而这些专题很少出现在其他数学书中。证明的陈述也不是通常所见的,这或许能给读者对此主题的一种不一样的口味。研究生们必定会从此书中获益。

经典自守形式专题英文版 目录

Preface Chapter 0. Introduction Chapter 1. The Classical Modular Forms 1.1. Periodic functions 1.2. Elliptic functions 1.3. Modular functions 1.4. The Fourier expansion of Eisenstein series 1.5. The modular group 1.6. The linear space of modular forms Chapter 2. Automorphic Forms in General 2.1. The hyperbolic plane 2.2. The classification of motions 2.3. Discrete groups -- Fuchsian groups 2.4. Congruence groups 2.5. Double coset decomposition 2.6. Multiplier systems 2.7. Automorphic forms 2.8. The eta-function and the theta-function Chapter 3. The Eisenstein and the Poincare Series 3.1. General Poincare series 3.2. Fourier expansion of Poincare series 3.3. The Hilbert space of cusp forms Chapter 4. Kloosterman Sums 4.1. General Kloosterman sums 4.2. Kloosterman sums for congruence groups 4.3. The classical Kloosterman sums 4.4. Power-moments of Kloosterman sums 4.5. Sums of Kloosterman sums 4.6. The Salie sums Chapter 5. Bounds for the Fourier Coefficients of Cusp Forms 5.1. General estimates 5.2. Estimates by Kloosterman sums 5.3. Coefficients of cusp forms with theta multiplier 5.4. Linear forms in Fourier coefficients of cusp forms 5.5. Spectral analysis of the diagonal symbol Chapter 6. Hecke Operators 6.1. Introduction 6.2. Hecke operators Tn 6.3. The Hecke operators on periodic functions 6.4. The Hecke operators for the modular group 6.5. The Hecke operators with a character 6.6. An overview of newforms 6.7. Hecke eigencuspforms for a primitive character 6.8. Final remarks Chapter 7. Automorphic L-functions 7.1. Introduction 7.2. The Hecke L-functions 7.3. Twisting automorphic forms and L-functions 7.4. Converse theorems Chapter 8. Cusp Forms Associated with Elliptic Curves 8.1. The Hasse-Weil L-function 8.2. Elliptic curves Er 8.3. Computing λ(p) 8.4. A Hecke Grossencharacter 8.5. A theta series 8.6. The automorphy of f Chapter 9. Spherical Functions 9.1. Positive definite quadratic forms 9.2. Space spherical functions 9.3. The spherical functions reconsidered 9.4. Harmonic analysis on the sphere Chapter 10. Theta Functions 10.1. Introduction 10.2. An inversion formula 10.3. The congruent theta functions 10.4. The automorphy of theta functions 10.5. The standard theta function Chapter 11. Representations by Quadratic Forms 11.1. Introduction 11.2. Siegel's mass formula 11.3. Representations by Eisenstein series and cusp forms 11.4. The circle method after Kloosterman 11.5. The singular series 11.6. Equidistribution of integral points on ellipsoids Chapter 12. Automorphic Forms Associated with Number Fields 12.1. Automorphic forms attached to Dirichlet L-functions 12.2. Hecke L-functions with Grossencharacters 12.3. Automorphic forms associated with quadratic fields 12.4. Class group L-functions reconsidered 12.5. L-functions for genus characters 12.6. Automorphic forms of weight one Chapter 13. Convolution L-functions 13.1. Introduction 13.2. Rankin-Selberg integrals 13.3. Selberg's theory of Eisenstein series 13.4. Statement of general results 13.5. The scattering matrix for Γ0(N) 13.6. Functional equations for the convolution L-functions 13.7. Metaplectic Eisenstein series 13.8. Symmetric power L-functions Bibliography Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服