书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
TensorFlow预测分析-(影印版)

TensorFlow预测分析-(影印版)

出版社:东南大学出版社出版时间:2018-08-01
开本: 16开 页数: 496
中 图 价:¥79.5(7.5折) 定价  ¥106.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

TensorFlow预测分析-(影印版) 版权信息

  • ISBN:9787564177522
  • 条形码:9787564177522 ; 978-7-5641-7752-2
  • 装帧:一般纯质纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

TensorFlow预测分析-(影印版) 本书特色

从结构化和非结构化数据中预测分析发现隐藏的 模式,可用于商业智能决策。
礼萨·卡里姆著的《TensorFlow预测分析(影印 版)(英文版)》将通过在三个主要部分中运用Tensor Flow,帮助你构建、调优和部署预测模型。**部分 包括预测建模所需的线性代数、统计学和概率论知识 。
第二部分包括运用监督(分类和回归)和无监督( 聚类)算法开发预测模型。然后介绍如何开发自然语 言处理(NLP)预测模型以及强化学习算法。*后.该 部分讲述如何开发一个基于机器的因式分解**系统 。
第三部分介绍**预测分析的深度学习架构,包 括深度神经网络以及高维和序列数据的递归神经网络 。*终,使用卷积神经网络进行预测建模,用于情绪 识别、图像分类和情感分析。

TensorFlow预测分析-(影印版) 内容简介

本书将通过在三个主要部分中运用TensorFlow,帮助你构建、调优和部署预测模型。**部分包括预测建模所需的线性代数、统计学和概率论。第二部分包括运用监督和无监督算法开发预测模型,强化学习算法等。第三部分介绍高级预测分析的深度学习架构,包括深度神经网络以及高维和序列数据的递归神经网络。*终,使用卷积神经网络进行预测建模,用于情绪识别、图像分类和情感分析。

TensorFlow预测分析-(影印版) 目录

Preface
Chapter 1: Basic Python and Linear Algebra for
Predictive Analytics
A basic introduction to predictive analytics
Why predictive analytics?
Working principles of a predictive model
A bit of linear algebra
Programming linear algebra
Installing and getting started with Python
Installing on Windows
Installing Python on Linux
Installing and upgrading PIP (or PIP3)
Installing Python on Mac OS
Installing packages in Python
Getting started with Python
Python data types
Using strings in Python
Using lists in Python
Using tuples in Python
Using dictionary in Python
Using sets in Python
Functions in Python
Classes in Python
Vectors, matrices, and graphs
Vectors
Matrices
Matrix addition
Matrix subtraction
Finding the determinant of a matrix
Finding the transpose of a matrix
Solving simultaneous linear equations
Eigenvalues and eigenvectors
Span and linear independence
Principal component analysis
Singular value decomposition
Data compression in a predictive model using SVD
Predictive analytics tools in Python
Summary
Chapter 2: Statistics, Probability, and Information Theory for
Predictive Modeling
Using statistics in predictive modeling
Statistical models
Parametric versus nonparametric model
Population and sample
Random sampling
Expectation
Central limit theorem
Skewness and data distribution
Standard deviation and variance
Covariance and correlation
Interquartile, range, and quartiles
Hypothesis testing
Chi-square tests
Chi-square independence test
Basic probability for predictive modeling
Probability and the random variables
Generating random numbers and setting the seed
Probability distributions
Marginal probability
Conditional probability
The chain rule of conditional probability
Independence and conditional independence
Bayes' rule
Using information theory in predictive modeling
Self-information
Mutual information
Entropy
Shannon entropy
Joint entropy
Conditional entropy
Information gain
Using information theory
……
Chapter 3: From Data to Decisions - Getting Started with TensorFlow
Chapter 4: Putting Data in Place -Supervised Learning for Predictive Analvtics
Chapter 5: Clustering Your Data - Unsupervised Learning for Predictive Analytics
Chapter 6: Predictive Analytics Pipelines for NLP
Chapter 7: Using Deep Neural Networks for Predictive Analytics
Chapter 8: Using Convolutional Neural Networks for Predictive Analvtics
Chapter 9: Using Recurrent Neural Networks for Predictive Analytics
Chapter 10: Recommendation Systems for Predictive Analytics
Chapter 11: Using Reinforcement Learning for Predictive Analytics
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
浏览历史
编辑推荐
返回顶部
中图网
在线客服