书馨卡帮你省薪
欢迎光临中图网 请 | 注册
> >>
微积分-(英文版.原书第9版)

微积分-(英文版.原书第9版)

出版社:机械工业出版社出版时间:2017-07-01
开本: 32开 页数: 796
本类榜单:自然科学销量榜
中 图 价:¥79.6(7.3折) 定价  ¥109.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>
买过本商品的人还买了

微积分-(英文版.原书第9版) 版权信息

  • ISBN:9787111275985
  • 条形码:9787111275985 ; 978-7-111-27598-5
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

微积分-(英文版.原书第9版) 本书特色

English reprint copyright 2007 by Pearson Education,Inc
Original English language title:Calculus 9 th ed,by Dale Varberg,Edwin J.Purcell,Steven ERigdon.
ISBN 0131429248
Copyright  2007 by Pearson Education,Inc.
All rights reserved.
Published by arrangement with the original publisher,Pearson Education,Inc,publishing as Pearson Benjamin Cummings.
本书影印版由Pearson Education(培生教育出版集团)授权给机械工业出版社出版发行。
本书封面贴有Pearson Education(培生教育出版集团)激光防伪标签。无标签者不得销售。
For sale and distribution in the Peoples Republic of China exclusively(except Taiwan,Hong Kong SAR and Macao SAR).
仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾地区)销售发行

微积分-(英文版.原书第9版) 内容简介

沃伯格、柏塞尔、里格登著的《微积分(英文版原书第9版)》是一本在美国大学中使用面比较广泛的微积分教材。有重视应用、便于自学、习题数量与内容比较丰富等特点。而与其他美国教材的差别在于严谨性,本书许多定理都有较严谨的证明,这一点与我国许多现行的理工科微积分教材比较类似。在美国也是另一种风格的教材。本书强调应用,习题数量多,类型多,重视不同数学学科之间的交叉,强调其实际背景,反映当代科技发展。每章之后有附加内容,有利用图形计算器或数学软件计算的习题或带研究性的小题目等。

微积分-(英文版.原书第9版) 目录

出版说明序Preface0 Preliminaries 0.1 Real Numbers.Estimation,and Logic 0.2 Inequalities and Absolute Values 0.3 The Rectangular Coordinate System 0.4 Graphs of Equations 0.5 Functions and Their Graphs 0.6 Operations on Functions 0.7 Trigonometric Functions 0.8 Chapter Review Review and Preview Problems1 Limits 1.1 Introduction to Limits 1.2 Rigorous Study of Limits 1.3 Limit Theorems 1.4 Limits Involving Trigonometric Functions 1.5 Limits at Infinity;Infinite Limits 1.6 Continuity of Functions 1.7 Chapter Review Review and Preview Problems2 The Derivative 2.1 Two Problems with One Theme 2.2 The Derivative 2.3 Rules for Finding Derivatives 2.4 Derivatives of Trigonometric Functions 2.5 The Chain Rule 2.6 Higher-Order Derivatives 2.7 Implicit Differentiation 2.8 Related Rates 2.9 Differentials and Approximations 2.10 Chapter Review Review and Preview Problems3 Applications of the Derivative 3.1 Maxima and Minima 3.2 Monotonicity and Concavity 3.3 Local Extrema and Extrema on Open Intervals 3.4 Practical Problems 3.5 Graphing Functions Using Calculus 3.6 The Mean Value Theorem for Derivatives 3.7 Solving Equations Numerically 3.8 Antiderivatives 3.9 Introduction to Differential Equations 3.10 Chapter Review Review and Preview Problems4 The Deftnite Integral 4.1 Introduction to Area 4.2 The Definite Integral 4.3 The First Fundamental Theorem of Calculus 4.4 The Second Fundamental Theorem of Calculus and the Method of Substitution 4.5 The Mean Value Theorem for Integrals and the Use of Symmetry 4.6 Numerical Integration 4.7 Chapter Review Review and Preview Problems5 Applications of the Integral 5.1 The Area of a Plane Region 5.2 Volumes of Solids:Slabs.Disks,Wlashers 5.3 Volumes of Solids of Revolution:Shells 5.4 Length of a Plane Curve 5.5 Work and Fluid Force 5.6 Moments and Center of Mass 5.7 Probability and Random Variabtes 5.8 Chapter Review322 Review and Preview Problems6 Transcendental Functions 6.1 The Natural Logarithm Function 6.2 Inverse Functions and Their Derivatives 6.3 The Natural Exponential Function 6.4 General Exponential and Logarithmic Functions 6.5 Exponential Growth and Decay 6.6 First.Order Linear Differential Equations 6.7 Approximations for Differential Equations 6.8 The Inverse Trigonometric Functions and Their Derivatives 6.9 The Hyperbolic Functions and Their Inverses 6.10 Chapter Review Review and Preview Problems7 Techniques of Integration 7.1 Basic Integration Rules 7.2 Integration by Parts 7.3 Some Trigonometric Integrals 7.4 Rationalizing Substitutions 7.5 Integration of Rational Functions Using Partial Fractions 7.6 Strategies for Integration 7.7 Chapter Review Review and Preview Problems8 Indeterminate Forms and Improper Integrals 8.1 Indeterminate Forms of Type 0/0 8.2 Other Indeterminate Forms 8.3 Improper Integrals: Infinite Limits of Integration 8.4 Improper Integrals: Infinite Integrands 8.5 Chapter Review Review and Preview Problems9 Infinite Series 9.1 Infinite Sequences 9.2 Infinite Series 9.3 Positive Series: The Integral Test 9.4 Positive Series: Other Tests 9.5 Alternating Series, Absolute Convergence, and Conditional Convergence 9.6 Power Series 9.7 Operations on Power Series 9.8 Taylor and Maclaurin Series 9.9 The Taylor Approximation to a Function 9.10 Chapter Review Review and Preview Problems10 Conics and Polar Coordinates 10.1 The Parabola 10.2 Ellipses and Hyperbolas 10.3 Translation and Rotation of Axes 10.4 Parametric Representation of Curves in the Plane 10.5 The Polar Coordinate System 10.6 Graphs of Polar Equations 10.7 Calculus in Polar Coordinates 10.8 Chapter Review Review and Preview Problems11 Geometry in Space and Vectors 11.1 Cartesian Coordinates in Three-Space 11.2 Vectors 11.3 The Dot Product 11.4 The Cross Product 11.5 Vector-Valued Functions and Curvilinear Motion 11.6 Lines and Tangent Lines in Three-Space 11.7 Curvature and Components of Acceleration 11.8 Surfaces in Three-Space 11.9 Cylindrical and Spherical Coordinates 11.10 Chapter Review Review and Preview Problems12 Derivatives for Functions of Two or More Variables 12.1 Functions of Two or More Variables 12.2 Partial Derivatives 12.3 Limits and Continuity 12.4 Differentiability 12.5 Directional Derivatives and Gradients 12.6 The Chain Rule 12.7 Tangent Planes and Approximations 12.8 Maxima and Minima 12.9 The Method of Lagrange Multipliers 12.10 Chapter Review Review and Preview Problems13 Multiple Integrals 13.1 Double Integrals over Rectangles 13.2 Iterated Integrals 13.3 Double Integrals over Nonrectangular Regions 13.4 Double Integrals in Polar Coordinates 13.5 Applications of Double Integrals 13.6 Surface Area 13.7 Triple Integrals in Cartesian Coordinates 13.8 Triple Integrals in Cylindrical and Spherical Coordinates 13.9 Change of Variables in Multiple Integrals 13.10 Chapter Review Review and Preview Problems14 Vector Calculus 14.1 Vector Fields 14.2 Line Integrals 14.3 Independence of Path 14.4 Green's Theorem in the Plane 14.5 Surface Integrals 14.6 Gauss's Divergence Theorem 14.7 Stokes's Theorem 14.8 Chapter ReviewAppendix A.1 Mathematical Induction A.2 Proofs of Several Theorems教辅材料说明教辅材料申请表
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服