超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
分数阶偏微分方程的动力学

分数阶偏微分方程的动力学

出版社:科学出版社出版时间:2017-03-01
开本: 32开 页数: 465
本类榜单:自然科学销量榜
中 图 价:¥132.7(7.9折) 定价  ¥168.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

分数阶偏微分方程的动力学 版权信息

  • ISBN:9787030517944
  • 条形码:9787030517944 ; 978-7-03-051794-4
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

分数阶偏微分方程的动力学 本书特色

本书研究了分数阶长短波方程、分数阶非线性Schrdinger方程、分数阶Boussinesq方程、分数阶MHD方程、分数阶耦合Ginzburg-Landau方程以及分数次噪声驱动的非牛顿流系统的适定性和吸引子等动力学性质,讨论了Lévy噪声、α-平稳噪声和退化噪声驱动的几类流体发展方程的鞅解、大偏差原理和遍历性等统计特征,系统地总结了作者在分数阶偏微分方程特别是*分数阶偏微分方程的动力学方面的研究成果.

分数阶偏微分方程的动力学 内容简介

黄建华、辛杰、沈天龙著的《分数阶偏微分方程的动力学》研究了分数阶长短波方程、分数阶非线性Schrodinger方程、分数阶Boussinesq方程、分数阶MHD方程、分数阶耦合Ginzburg-Landau方程以及分数次噪声驱动的非牛顿流系统的适定性和吸引子等动力学性质,讨论了Levy噪声、α-平稳噪声和退化噪声驱动的几类流体发展方程的鞅解、大偏差原理和遍历性等统计特征,系统地总结了作者在分数阶偏微分方程特别是随机分数阶偏微分方程的动力学方面的研究成果。 本书可供大学数学专业高年级本科生、研究生、教师以及相关的科技工作者阅读参考。

分数阶偏微分方程的动力学 目录

第1章 分数阶微积分与随机分析基础 1.1 分数阶微积分基础 1.1.1 Grunwald-Letnikov型分数阶微积分 1.1.2 Riemann-Liouville型分数阶微积分 1.1.3 Caputo型分数阶微积分 1.1.4 Weyl型分数阶微积分 1.1.5 几类分数阶导数之间的关系 1.2 随机动力系统基础 1.2.1 Brown运动 1.2.2 Ito积分的定义与性质 1.2.3 Ito公式 1.2.4 停时 1.2.5 鞅的概念与性质 1.2.6 常用的不等式 1.2.7 分数Brown运动及其随机积分 1.2.8 Levy过程及其随机积分 1.2.9 随机动力系统 参考文献第2章 非自治分数阶长短波方程的一致吸引子 2.1 预备知识 2.2 先验估计 2.3 非自治长短波方程整体解的存在唯一性 2.4 非自治长短波方程一致吸引子的存在性 参考文献第3章 分数阶非线性Schrodinger方程的适定性 3.1 分数阶非线性Schrodinger方程组周期边值问题 3.1.1 预备知识 3.1.2 先验估计 3.1.3 弱解和整体光滑解的存在唯一性 3.2 非线性分数阶Schrodinger方程组驻波的存在性和稳定性 3.2.1 预备知识 3.2.2 先验估计 3.2.3 基波的存在性和稳定性 参考文献第4章 分数次噪声驱动的非牛顿流系统的动力学 4.1 非牛顿流体力学方程 4.2 无穷维分数Brown运动的随机卷积性质 4.2.1 H∈(1/2,1)情形 4.2.2 H∈(0,1/2)情形 4.3 分数Brown运动驱动的非牛顿流系统的随机吸引子 4.3.1 H∈(1/2,1)情形 4.3.2 H∈(1/4,1/2)情形 4.4 分数Brown运动驱动的修正Boussinesq近似方程的随机吸引子 4.4.1 H∈(1/2,1)情形 4.4.2 H∈(1/4,1/2)情形 4.5 分数次噪声驱动的随机中立型时滞发展方程的适度解 参考文献第5章 高斯噪声驱动的几类随机分数阶发展方程的动力学 5.1 预备知识 5.2 分数阶Boussinesq方程的随机吸引子 5.2.1 分数阶Boussinesq方程的适定性 5.2.2 随机吸引子的存在性 5.3 分数阶磁流体方程的随机吸引子 5.3.1 先验估计 5.3.2 MHD方程的整体适定性 5.3.3 随机吸引子的存在性 5.4 分数阶耦合Ginzburg-Landau方程组的随机吸引子 5.4.1 分数阶耦合GL方程弱解的适定性 5.4.2 确定型分数阶耦合GL方程的整体吸引子 5.4.3 乘性噪声驱动的分数阶耦合GL方程的随机吸引子 参考文献第6章 Levy噪声驱动的几类流体方程的动力学 6.1 Levy噪声驱动的随机非牛顿流的鞅解及Markov可选性 6.1.1 基本假设 6.1.2 鞅解的存在性 6.1.3 Markov可选性 6.2 Levy噪声驱动的分数阶Boussinesq方程的适定性 6.2.1 先验估计 6.2.2 整体适定性 6.3 Levy噪声驱动的Boussinesq方程的遍历性 6.3.1 基本假设 6.3.2 先验估计 6.3.3 遍历性 6.3.4 不变测度 6.4 Levy噪声驱动的Boussinesq方程的大偏差原理 6.4.1 指数估计 6.4.2 大偏差原理 6.4.3 一类流体发展方程的大偏差原理 6.5 Levy噪声驱动的Boussinesq方程的动力学 参考文献第7章 α-平稳噪声驱动几类偏微分方程的遍历性 7.1 α-平稳噪声及矩估计 7.2 α-平稳噪声驱动的MHD方程的遍历性 7.2.1 适度解的适定性 7.2.2 不变测度的存在性 7.2.3 不变测度的唯一性 7.3 α-平稳噪声驱动的抽象流体发展方程的遍历性 7.3.1 适度解的适定性 7.3.2 不变测度的存在性 7.3.3 不变测度的唯一性 7.4 α-平稳噪声驱动的分数阶耦合Ginzburg-Landau方程的遍历性 7.4.1 适度解的适定性 7.4.2 不变测度的存在性 7.4.3 不变测度的唯一性 参考文献第8章 退化噪声驱动的几类随机偏微分方程的遍历性 8.1 退化噪声驱动的Ginzburg-Landau-Newell方程的遍历性 8.1.1 预备知识 8.1.2 矩估计和轨道唯一性 8.1.3 鞅解的存在性 8.1.4 不变测度的存在性 8.1.5 遍历性 8.2 退化噪声驱动的分数阶Boussinesq方程的遍历性 8.2.1 高阶矩估计 8.2.2 鞅解的存在性 8.2.3 不变测度及其遍历性 参考文献第9章 时变区域上随机部分耗散系统的动力学 9.1 时变区域上的偏微分方程 9.2 时变区域上SPDS的变分解 9.3 Dσ-拉回吸引子的存在性 参考文献
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服