-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
图像分析中的模型和逆问题 版权信息
- ISBN:9787510070198
- 条形码:9787510070198 ; 978-7-5100-7019-8
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
图像分析中的模型和逆问题 本书特色
this book fulfills a need in the field of computer science research and education. it is not intended for professional mathematicians, but it undoubtedly deals with applied mathematics. most of the expectations of the topic are fulfilled: precision, exactness, completeness, and excellent references to the original historical works. however, for the sake of read-ability, many demonstrations are omitted. it is not a book on practical image processing, of which so many abound, although all that it teaches is directly concerned with image analysis and image restoration. it is the perfect resource for any advanced scientist concerned with a better un-derstanding of the theoretical models underlying the methods that have efficiently solved numerous issues in robot vision and picture processing.
图像分析中的模型和逆问题 内容简介
《图像分析中的模型和逆问题》,本书是一部十分优秀的讲述成像分析中的贝叶斯成像和样条模型的教材。随着更多数学家在新兴学科数字成像数理中参与地越来越多,并且在解决复杂问题的模型建立方面扮演越来越重要的角色,做出的贡献也日益呈现。这本书出现显得尤为重要。本书更多地强调基于能量的模型,这些模型大多源于作者参与的机器人视野和X光线照相术,如追踪3D线、射线图像处理、3D重组和X线断层摄影术、等等的工业项目。读者对象:该书的目标读者是想学习更多在成像处理应用的数理统计人员和想要将数学知识应用于自身研究的工程人员。
图像分析中的模型和逆问题 目录
foreword by henri maitreacknowledgmentslist of figuresnotation and symbols1 introduction 1.1 about modeling 1.1.1 bayesian approach 1.1.2 inverse problem 1.1.3 energy-based formulation 1.1.4 models 1.2 structure of the book spline models2 nonparametrie spline models 2.1 definition 2.2 optimization 2.2.1 bending spline 2.2.2 spline under tension 2.2.3 robustness 2.3 bayesian interpretation 2.4 choice of regularization parameter 2.5 approximation using a surface 2.5.1 l-spline surface 2.5.2 quadratic energy 2.5.3 finite element optimization3 parametric spline models 3.1 representation on a basis of b-splines 3.1.1 approximation spline 3.1.2 construction of b-splines 3.2 extensions 3.2.1 multidimensional case 3.2.2 heteroscedasticity 3.3 high-dimensional splines 3.3.1 revealing directions 3.3.2 projection pursuit regression4 auto-associative models 4.1 analysis of multidimensional data 4.1.1 a classical approach 4.1.2 toward an alternative approach 4.2 auto-associative composite models 4.2.1 model and algorithm 4.2.2 properties 4.3 projection pursuit and spline smoothing 4.3.1 projection index 4.3.2 spline smoothing 4.4 illustrationⅱ markov models5 fundamental aspects 5.1 definitions 5.1.1 finite markov fields 5.1.2 gibbs fields 5.2 markov-gibbs equivalence 5.3 examples 5.3.1 bending energy 5.3.2 bernoulli energy 5.3.3 gaussian energy 5.4 consistency problem6 bayesian estimation 6.1 principle 6.2 cost functions 6.2.1 cost b-hnction examples 6.2.2 calculation problems7 simulation and optimization 7.1 simulation 7.1.1 homogeneous markov chain 7.1.2 metropolis dynamic 7.1.3 simulated gibbs distribution 7.2 stochastic optimization 7.3 probabilistic aspects 7.4 deterministic optimization 7.4.1 icm algorithm 7.4.2 relaxation algorithms8 parameter estimation 8.1 complete data 8.1.1 maximum likelihood 8.1.2 maximum pseudolikelihood 8.1.3 logistic estimation 8.2 incomplete data 8.2.1 maximum likelihood 8.2.2 gibbsian em algorithm 8.2.3 bayesian calibration ⅲ modeling in action9 model-building 9.1 multiple spline approximation 9.1.1 choice of data and image characteristics 9.1.2 definition of the hidden field 9.1.3 building an energy 9.2 markov modeling methodology 9.2.1 details for implementation10 degradation in imaging 10.1 denoising 10.1.1 models with explicit discontinuities 10.1.2 models with implicit discontinuities 10.2 deblurring 10.2.1 a particularly ill-posed problem 10.2.2 model with implicit discontinuities 10.3 scatter 10.3.1 direct problem 10.3.2 inverse problem 10.4 sensitivity functions and image fusion 10.4.1 a restoration problem 10.4.2 transfer function estimation 10.4.3 estimation of stained transfer function11 detection of filamentary entities 11.1 valley detection principle 11.1.1 definitions 11.1.2 bayes-markov formulation 11.2 building the prior energy 11.2.1 detection term 11.2.2 regularization term 11.3 optimization 11.4 extension to the case of an image pair12 reconstruction and projections 12.1 projection model 12.1.1 transmission tomography 12.1.2 emission tomography 12.2 regularized reconstruction 12.2.1 regularization with explicit discontinuities 12.2.2 three-dimensional reconstruction 12.3 reconstruction with a single view 12.3.1 generalized cylinder 12.3.2 training the deformations 12.3.3 reconstruction in the presence of occlusion13 matching 13.1 template and hidden outline 13.1.1 rigid transformations 13.1.2 spline model of a template 13.2 elastic deformations 13.2.1 continuous random fields 13.2.2 probabilistie aspectsreferencesauthor indexsubject index
图像分析中的模型和逆问题 作者简介
Bernard Chalmond是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
- >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
推拿
推拿
¥12.2¥32.0 - >
回忆爱玛侬
回忆爱玛侬
¥23.0¥32.8 - >
我与地坛
我与地坛
¥27.2¥28.0 - >
月亮与六便士
月亮与六便士
¥18.1¥42.0 - >
烟与镜
烟与镜
¥14.4¥48.0 - >
大红狗在马戏团-大红狗克里弗-助人
大红狗在马戏团-大红狗克里弗-助人
¥3.5¥10.0 - >
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
¥9.9¥23.0
-
怎样解题
¥17.2¥29 -
自然哲学的数学原理-拟定经典力学世界图景的旷世巨典-全新修订本
¥39.4¥58 -
数学-应用与思考
¥16.1¥32.8 -
数学万花筒 修订版
¥32.4¥49 -
数学万花筒-夏尔摩斯探案集-3
¥30.1¥39 -
新型元启发式算法及其应用
¥77.4¥98