书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
计算物理学-第2版

计算物理学-第2版

作者:蒂森
出版社:世界图书出版公司出版时间:2011-04-01
开本: 16开 页数: 620
本类榜单:自然科学销量榜
中 图 价:¥76.5(8.6折) 定价  ¥89.0 登录后可看到会员价
暂时缺货 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

计算物理学-第2版 版权信息

计算物理学-第2版 本书特色

蒂森编著的《计算物理学(英文版)(第2版)》是一部理论物理研究的计算方法的教程。新增加的部分包括,有限元方法,格点Boltzmann模拟,密度函数理论,量子分子动力学,Monte Carlo模拟和一维量子系统的对角化。书中囊括了了物理研究的很多不同方面和不同计算方法论。如Monte Carlo方法和分子模拟动力学以及各种电子结构方法论,偏微分方程解方法,格点规范理论。全书都在强调不同物理场中的方法之间的关系,内容较为简洁明快,具有基本编程,数值分析,场论以及凝聚态理论和统计物理的本科知识背景就可以完全读懂本书。不管是理论物理,计算物理还是实验物理专业的研究生还是科研人员,本书都相当有参考价值。目次:导论;具有球对称势的量子散射;Schrdinger方程的变分大法;Hartree-fock方法;密度函数理论;周期性固态Schr.dinger方程解法;经典平衡态统计力学;分子动力学模拟;量子分子动力学;Monte Carlo方法;变换矩阵和自旋链的对角化;量子Monte Carlo方法,偏微分方程的有限元方法,流体力学的Lattice Boltzmann方法,格点场论的计算方法;高效能计算和并行法;附:数值法;随机数发生器。

计算物理学-第2版 内容简介

This Second Edition has been fully updated. The wide range of topics covered inthe First Edition has been extended with new chapters on finite element methodsand lattice Boltzmann simulation. New sections have been added to the chapters ondensity functional theory, quantum molecular dynamics, Monte Carlo simulationand diagonalisation of one-dimensional quantum systems. The book covers many different areas of physics research and different computa-tional methodologies, with an emphasis on condensed matter physics and physicalchemistry. It includes computational methods such as Monte Carlo and moleculardynamics, various electronic structure methodologies, methods for solving par-tial differential equations, and lattice gauge theory. Throughout the book, therelations between the methods used in different fields of physics are emphas-ised. Several new programs are described and these can be downloaded fromwww.cambridge.org/9780521833462 The book requires a background in elementary programming, numerical analysisand field theory, as well as undergraduate knowledge of condensed matter theoryand statistical physics. It will be of interest to graduate students and researchers intheoretical, computational and experimental physics.Jos THIJSSEN is a lecturer at the Kavli Institute of Nanoscience at Delft Universityof Technology.

计算物理学-第2版 目录

preface to the first edition preface to the second edition 1 introduction  1.1 physics and computational physics  1.2 classical mechanics and statistical mechanics  1.3 stochastic simulations  1.4 electrodynamics and hydrodynamics  1.5 quantum mechanics  1.6 relations between quantum mechanics and classical statistical physics  1.7 quantum molecular dynamics  1.8 quantum field theory  1.9 about this book  exercises  references 2 quantum scattering with a spherically symmetric  potential  2.1 introduction  2.2 a program for calculating cross sections  2.3 calculation of scattering cross sections  exercises  references 3 the variational method for the schr'odinger equation  3.1 variational calculus  3.2 examples of variational calculations  3.3 solution of the generalised eigenvalue problem  3.4 perturbation theory and variational calculus  exercises  references 4 the hartree-fock method  4.1 introduction  4.2 the bom-oppenheimer approximation and the independent-particle method  4.3 the helium atom  4.4 many-electron systems and the slater determinant  4.5 self-consistency and exchange: hartree-fock theory  4.6 basis functions  4.7 the structure of a hartree-fock computer program  4.8 integrals involving gaussian functions  4.9 applications and results  4.10 improving upon the hartree-fock approximation  exercises  references 5 density functional theory  5.1 introduction  5.2 the local density approximation  5.3 exchange and correlation: a closer look  5.4 beyond dft: one- and two-particle excitations  5.5 a density functional program for the helium atom  5.6 applications and results  exercises  references 6 solving the schriodinger equation in periodic solids  6.1 introduction: definitions  6.2 band structures and bloch's theorem  6.3 approximations  6.4 band structure methods and basis functions  6.5 augmented plane wave'methods  6.6 the linearised apw (lapw) method  6.7 the pseudopotential method  6.8 extracting information from band structures  6.9 some additional remarks  6.10 other band methods  exercises  references 7 classical equilibrium statistical mechanics  7.1 basic theory  7.2 examples of statistical models; phase transitions  7.3 phase transitions  7.4 determination of averages in simulations  exercises  references 8 Molecular dynamics simulations  8.1 introduction  8.2 molecular dynamics at constant energy  8.3 a molecular dynamics simulation program for argon  8.4 integration methods: symplectic integrators  8.5 molecular dynamics methods for different ensembles  8.6 molecular systems  8.7 long-range interactions  8.8 langevin dynamics simulation  8.9 dynamical quantities: nonequilibrium molecular dynamics  exercises  references 9 quantum molecular dynamics  9.1 introduction  9.2 the molecular dynamics method  9.3 an example: quantum molecular dynamics for the hydrogen molecule  9.4 orthonormalisation; conjugate gradient and rm-diis techniques  9.5 implementation of the car-parrinello technique for pseudopotential dft  exercises  references 10 the monte carlo method  10.1 introduction  10.2 monte carlo integration  10.3 importance sampling through markov chains  10.4 other ensembles  10.5 estimation of free energy and chemical potential  10.6 further applications and monte carlo methods  10.7 the temperature of a finite system  exercises  references 11 transfer matrix and diagonalisation of spin chains  11.1 introduction  11.2 the one-dimensional ising model and the transfer matrix  11.3 two-dimensional spin models  11.4 more complicated models  11.5 'exact' diagonalisation of quantum chains  11.6 quantum renormalisation in real space  11.7 the density matrix renormalisation group method  exercises  references 12 quantum monte carlo methods  12.1 introduction  12.2 the variational monte carlo method  12.3 diffusion monte carlo  12.4 path-integral monte carlo  12.5 quantum monte carlo on a lattice  12.6 the monte carlo transfer matrix method  exercises  references 13 the finite element method for partial differential equations  13.1 introduction  13.2 the poisson equation  13.3 linear elasticity  13.4 error estimators  13.5 local refinement  13.6 dynamical finite element method  13.7 concurrent coupling of length scales: fem and md  exercises  references 14 the lattice boltzmann method for fluid dynamics  14.1 introduction  14.2 derivation of the navier-stokes equations  14.3 the lattice boltzmann model  14.4 additional remarks  14.5 derivation of the navier-stokes equation from the  lattice boltzmann model  exercises  references 15 computational methods for lattice field theories  15.1 introduction  15.2 quantum field theory  15.3 interacting fields and renormalisation  15.4 algorithms for lattice field theories  15.5 reducing critical slowing down  15.6 comparison of algorithms for scalar field theory  15.7 gauge field theories  exercises  references 16 high performance computing and parallelism  16.1 introduction  16.2 pipelining  16.3 parallelism  16.4 parallel algorithms for molecular dynamics  references Appendix a numerical methods  A1 about numerical methods  A2 iterative procedures for special functions  A3 finding the root of a function  A4 finding the optimum of a function  A5 discretisation  A6 numerical quadratures  A7 differential equations  A8 linear algebra problems  A9 the fast fourier transform  exercises  references  appendix b random number generators  B1 random numbers and pseudo-random numbers  B2 random number generators and properties of pseudo-random numbers  B3 nonuniform random number generators  exercises  references  index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服