-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
深度学习理论与实践 版权信息
- ISBN:9787111754206
- 条形码:9787111754206 ; 978-7-111-75420-6
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 所属分类:>
深度学习理论与实践 本书特色
配套资源:电子课件、实验和案例讲解视频、教学大纲、习题答案、模拟试题、程序代码、数据集。 本书特色: 强调实际生产中深度学习技术的应用过程。 提供8个综合实践应用案例。
深度学习理论与实践 内容简介
本书分3个部分,分别为深度学习理论基础、深度学习实验和深度学习案例。这3个部分层层递进,介绍了机器学习的基础知识与常用方法,包括机器学习基本操作的原理和在深度学习框架下的实践步骤。第1部分通过7章来介绍深度学习的基础知识,包括深度学习在不同领域的应用,不同深度学习框架的对比,以及机器学习、神经网络等方面的内容。第2部分包括常用深度学习框架的基础讲解,以及计算机视觉、自然语言处理、强化学习和可视化技术领域的一些实验讲解。第3部分提供了8个案例,介绍深度学习在图像分类、目标检测、目标识别、图像分割、风格迁移、自然语言处理等方面的应用。本书将理论与实践紧密结合,能为读者提供有益的学习指导。 本书适合高等院校计算机科学和软件工程等相关专业的学生、深度学习初学者和机器学习算法分析从业人员阅读。
深度学习理论与实践 目录
第1部分深度学习理论基础
第1章深度学习简介
11计算机视觉
111定义
112基本任务
113传统方法
114仿生学与深度学习
115现代深度学习
116卷积神经网络
12自然语言处理
121自然语言处理的基本问题
122传统方法与神经网络方法的比较
123发展趋势
13强化学习
131什么是强化学习
132强化学习算法简介
133强化学习的应用
14本章小结
习题
第2章深度学习框架
21PyTorch
211什么是PyTorch
212PyTorch的特点
213PyTorch应用概述
22TensorFlow
221什么是TensorFlow
222数据流图
223TensorFlow的特点
224TensorFlow应用概述
23PaddlePaddle
231什么是PaddlePaddle
232PaddlePaddle的特点
233PaddlePaddle应用概述
24三者的比较
25本章小结
习题
第3章机器学习基础知识
31机器学习概述
311关键术语
312机器学习的分类
313机器学习的模型构造过程
32监督学习
321线性回归
322逻辑斯谛回归
323*小近邻法
324线性判别分析法
325朴素贝叶斯分类器
326决策树分类算法
327支持向量机分类算法
33无监督学习
331划分式聚类方法
332层次化聚类方法
333基于密度的聚类方法
34强化学习
341强化学习、监督学习和无监督学习
342强化学习问题描述
343强化学习问题分类
35神经网络和深度学习
351感知器模型
352前馈神经网络
353卷积神经网络
354其他类型结构的神经网络
36本章小结
习题
第4章回归模型
41线性回归模型
42Logistic回归模型
43用PyTorch实现Logistic回归
431数据准备
432线性方程
433激活函数
434损失函数
435优化算法
436模型可视化
44本章小结
习题
第5章神经网络基础
51基础概念
52感知器
521单层感知器
522多层感知器
53BP神经网络
531梯度下降
532反向传播
54Dropout正则化
55批标准化
551批标准化的实现方式
552批标准化的使用方法
56本章小结
习题
第6章卷积神经网络(CNN)与计算机视觉
61卷积神经网络的基本思想
62卷积操作
63池化层
64卷积神经网络
65经典网络结构
651VGG网络
652InceptionNet
653ResNet
654GAN
655Diffusion模型
66用PyTorch进行手写数字识别
67本章小结
习题
第7章神经网络与自然语言处理
71语言建模
72基于多层感知机的架构
73基于循环神经网络的架构
731循环单元
732通过时间反向传播
733带有门限的循环单元
734循环神经网络语言模型
735神经机器翻译
74基于卷积神经网络的架构
75基于Transformer的架构
751多头注意力
752非参位置编码
753编码器单元与解码器单元
76表示学习与预训练技术
761词向量
762加入上下文信息的特征表示
763网络预训练
77本章小结
习题
第2部分深度学习实验
第8章操作实践
81PyTorch操作实践
811PyTorch安装
812Tensor 对象及其运算
813Tensor 的索引和切片
814Tensor的变换、拼接和拆分
815PyTorch的Reduction操作
816PyTorch的自动微分
82TensorFlow操作实践
821TensorFlow安装
822Tensor 对象及其运算
823Tensor 的索引和切片
824Tensor 的变换、拼接和拆分
825TensorFlow的Reduction操作
826TensorFlow 的自动微分
83PaddlePaddle操作实践
831PaddlePaddle安装
832Tensor 的创建和初始化
833Tensor的常见基础操作
834自动微分
84本章小结
第9章人工智能热门研究领域实验
91计算机视觉
911一个通用的图像分类模型
912两阶段目标检测和语义分割
913人物图像处理
914调用远程服务
915动漫图像生成
92自然语言处理
921垃圾邮件分类
922词嵌入技术
923文本生成与多轮对话
924语音识别
93强化学习:一个会玩平衡摆的智能体
94可视化技术
941使用TensorBoard可视化训练过程
942卷积核可视化
943注意力机制可视化
95本章小结
第3部分深度学习案例
第10章案例:花卉图片分类
101环境与数据准备
1011环境安装
1012数据集简介
1013数据集下载与处理
102模型创建、训练和测试
1021模型创建与训练
1022测试与结果
103本章小结
第11章案例:人脸关键点检测
111数据准备
1111人脸裁剪与缩放
1112数据归一化处理
1113整体代码
112模型搭建与训练
1121特征图生成
1122模型搭建
1123模型训练
113模型评价
114本章小结
第12章案例:街景门牌字符识别
121背景介绍
122算法介绍
1221YOLOv4
1222算法流程
123模型优化
1231数据增强
1232模型融合
124结果展
深度学习理论与实践 作者简介
吕云翔,从2003年在北航软件学院工作以来,一直讲授本科生的“计算机导论”、“职业生涯规划”和“软件工程”这三门课,以及研究生的“软件工程”课(全英文,2003-2007)。在教学上能够认真备课,积极探索,并且能够将大量的教学经验(从1986年开始从教)应用到实际的教学中,教学效果良好,使学生能够很好地掌握相关的知识和技能。2009年获得北航软件学院第一届教学比赛二等奖。从2011年开始,以全英文的方式讲授“计算机导论”课程。 作为研究生指导教师先后指导了近200名研究生的毕业答辩。作为本科生指导教师,指导了本科毕业设计的学生近100名。在指导的过程中,取得的效果良好。 先后以第一作者著、编著和翻译了二十多本书。2009年获得北航软件学院著书特别奖。获北航教学成果二等奖一项(2012),三等奖两项(2010、2014)。
- >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
山海经
山海经
¥17.7¥68.0 - >
巴金-再思录
巴金-再思录
¥14.7¥46.0 - >
人文阅读与收藏·良友文学丛书:一天的工作
人文阅读与收藏·良友文学丛书:一天的工作
¥14.7¥45.8 - >
月亮与六便士
月亮与六便士
¥18.1¥42.0 - >
我从未如此眷恋人间
我从未如此眷恋人间
¥32.4¥49.8 - >
罗庸西南联大授课录
罗庸西南联大授课录
¥13.8¥32.0 - >
伊索寓言-世界文学名著典藏-全译本
伊索寓言-世界文学名著典藏-全译本
¥9.3¥19.0
-
Photoshop 2022中文版案例教程
¥44.1¥59.8 -
局域网组建、管理与维护(第4版)(微课版)
¥47¥59 -
园林AUTOCAD教程
¥24¥45 -
Python实战编程:从零学Python
¥81¥108 -
Java程序设计基础
¥37¥50 -
数据备份与恢复
¥51.4¥69