超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
PYTHON数据分析(普通高等教育数据科学与大数据技术专业教材)

PYTHON数据分析(普通高等教育数据科学与大数据技术专业教材)

出版社:中国水利水电出版社出版时间:2023-12-01
开本: 大16开 页数: 208
本类榜单:教材销量榜
中 图 价:¥30.2(7.2折) 定价  ¥42.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

PYTHON数据分析(普通高等教育数据科学与大数据技术专业教材) 版权信息

PYTHON数据分析(普通高等教育数据科学与大数据技术专业教材) 内容简介

本书内容表达图文并茂、通俗易懂,以实践操作应用为导向,侧重知识的内在认知逻辑引导,适合于理论与实践相结合的教学方式。本书从开发环境配置入手,随后对 Python 简介及数据分析概述和 Python 语言基础进行介绍,着重讲解了科学计算库 NumPy 和数据处理库 Pandas,然后进一步对数据分析的数 据可视化和数据分析方法进行内容展开,由浅入深地引出数据分析实战案例,在对这三个案例进行数据分析的过程中,将前面内容综合应用到数据分析案例中,进一步加深理论知识的理解。全书理论部分可以作为理论课知识进行教学,后面案例可以作为实训课使用。全书章节可以拆分重组,为不同背景知识的学生提供合适的知识组合,为教师组织教学提供教学便利。本书适合作为本科或高职院校的计算机科学技术、数据科学与大数据技术、人工智能、信息管理、电子商务、应用数学、信息与计算科学、统计学、金融工程、市场营销等专业的教学用书,同时也适合作为其他相关专业的选修课程教材。本书提供微课视频,并配套程序源代码、教学课件和习题答案。

PYTHON数据分析(普通高等教育数据科学与大数据技术专业教材) 目录

前言
第1章 Python简介及数据分析概述
1.1 Python简介
1.1.1 Python语言的特点
1.1.2 Python语言的应用领域
1.2 Python开发环境部署
1.2.1 下载对应版本安装文件
1.2.2 Python的安装及相关文件介绍
1.3 扩展库的安装
1.4 开发环境应用示例
1.4.1 Anaconda的功能介绍及安装
1.4.2 JupyterLab的使用及文本数据分析实例演示
1.5 数据分析概述
1.5.1 数据分析的过程
1.5.2 数据分析常用扩展库
本章小结
练习1
第2章 Python语言基础
2.1 数据类型
2.1.1 数值
2.1.2 字符串
2.1.3 列表
2.1.4 元组
2.1.5 集合
2.1.6 字典
2.2 数据类型的共有方法
2.2.1 索引
2.2.2 切片
2.2.3 提取长度
2.2.4 统计
2.2.5 确认成员身份
2.2.6 删除变量
2.3 字符串、列表、元组、集合及字典的方法
2.3.1 字符串的方法
2.3.2 列表的方法
2.3.3 元组的方法
2.3.4 集合的方法
2.3.5 字典的方法
2.4 内置函数、内置模块与自定义函数
2.4.1 内置函数
2.4.2 高级函数
2.4.3 help()函数
2.4.4 内置函数与内置模块的区别
2.4.5 常用的内置模块
2.4.6 自定义函数
2.5 类和对象
2.5.1 类和对象的概念
2.5.2 类和对象的使用
2.5.3 类和对象实例演示
2.6 读取数据文件
本章小结
练习2
第3章 科学计算库NumPy
3.1 NumPy简介
3.2 NumPy中的对象
3.2.1 ndarray对象
3.2.2 array对象的属性和方法
3.2.3 NumPy创建数组
3.3 NumPy中数组的索引
3.3.1 数组的维度和基本索引
3.3.2 高级索引
3.4 Numpy中的统计函数
3.5 Numpy中的矩阵操作
本章小结
练习3
第4章 数据处理库Pandas
4.1 Pandas简介
4.1.1 Pandas的安装与导入
4.1.2 数据类型Series
4.1.3 数据类型DataFrame
4.2 数据文件读取
4.2.1 excel文件读取
4.2.2 csv文件读取
4.3 数据类型Series和DataFrame
4.3.1 Series常见的属性与方法
4.3.2 DataFrame常见的属性与方法
4.4 Pandas的高级操作
4.4.1 Pandas的高级操作简介
4.4.2 Pandas数据分析案例
4.4.3 Pandas数据分析案例
本章小结
练习4
第5章 数据可视化
5.1 数据可视化简介
5.2 Matplotlib可视化
5.2.1 Matplotlib散点图示例
5.2.2 Matplotlib线图示例
5.2.3 Matplotlib柱状图示例
5.2.4 Matplotlib饼图示例
5.2.5 Matplotlib箱线图示例
5.2.6 Matplotlib直方图示例
5.2.7 Matplotlib多子图示例
5.3 Pandas绘图
本章小结
练习5
第6章 数据分析方法
6.1 数据分析方法概述
6.1.1 ETL(Extract-Transform-Load)
6.1.2 数据分析中常用的方法
6.2 数据预处理
6.2.1 异常值处理
6.2.2 缺失值处理
6.2.3 归一化处理
6.3 分类与预测
6.3.1 决策树
6.3.2 朴素贝叶斯
6.3.3 支持向量机
6.3.4 神经网络
6.4 回归
6.4.1 线性回归
6.4.2 非线性回归
6.5 聚类
6.5.1 层次聚类
6.5.2 非层次聚类
本章小结
练习6
第7章 电影数据分析
7.1 项目简介
7.2 代码实现
7.2.1 数据清洗
7.2.2 编程打分
7.2.3 其他数据类型处理
7.2.4 建模分析
本章小结
练习7
第8章 客户价值分析
8.1 项目简介
8.2 代码实现
8.2.1 数据清洗
8.2.2 客户属性与客户流失的关系分析
8.2.3 产品属性与客户流失的关系分析
8.2.4 客户行为与客户流失的关系分析
本章小结
练习8
第9章 房价预测分析
9.1 项目简介
9.2 代码实现
9.2.1 线性回归
9.2.2 随机森林
9.2.3 支持向量机
9.2.4 模型评估比较
本章小结
练习9
参考文献
展开全部

PYTHON数据分析(普通高等教育数据科学与大数据技术专业教材) 作者简介

冯志辉,天津城建大学理学院教师,主要从事科学计算及数据分析方面的教学及研究工作,发表国际国内学术论文多篇,近六年指导本科毕业生18人,主要进行Python相关研究,多次获得校级优秀毕业论文,且就业方面良好。本人多次在校级教师基本竞赛及多媒体课件比赛获奖,获第十三届天津市高校青年教师教学基本功竞赛三等奖,所授课程:“Python科学计算”“Python数据分析”“Python编程及案例分析”等。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服