图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
>
多智能体机器人系统信息融合与协调

多智能体机器人系统信息融合与协调

出版社:科学出版社出版时间:2015-07-01
开本: B5 页数: 188
中 图 价:¥77.4(7.9折) 定价  ¥98.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

多智能体机器人系统信息融合与协调 版权信息

  • ISBN:9787030447623
  • 条形码:9787030447623 ; 978-7-03-044762-3
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 所属分类:

多智能体机器人系统信息融合与协调 内容简介

本书提出了一种基于Markov对策的多Agent协调框架并给出了相应的算法。通过对多Agent环境的分析,在对策论框架下进行多Agent协调,重点研究了MAS中敌对平衡与协作平衡的多Agent学习算法。基于多Agent中竞争和合作的关系,设计了一种分层结构处理多Agent协调:利用零和Markov进行Agent群体之间的竞争与对抗,利用团队Markov对策完成Agent群体内部的协调与合作。机器人足球赛结果表明了本方法的可行性及优越性。

多智能体机器人系统信息融合与协调 目录

目录《智能科学技术著作丛书》序前言第1章 绪论 11.1 引言 11.2 多机器人系统中的信息融合 21.2.1 机器人传感器系统 21.2.2 机器人多传感器信息融合 21.3 多机器人协调与合作研究现状 41.4 多Agent信息融合与协调的研究现状 61.4.1 多Agent信息融合 71.4.2 多Agent协调与合作 71.5 机器人足球及其研究进展 91.5.1 机器人足球的发展概况 91.5.2 FIRA机器人足球比赛系统 101.5.3 机器人足球的关键技术和研究热点 111.6 本书的结构和内容安排 13参考文献 14第2章 多Agent的信息融合模型与方法 162.1 引言 162.2 Agent与MAS的概念及特性 172.2.1 Agent的由来及定义 172.2.2 Agent的特性 182.2.3 MAS的概念与特性 212.2.4 MAS与复杂系统 212.2.5 MAS与智能系统 232.3 信息融合技术概述 252.3.1 信息融合的概念与定义 262.3.2 信息融合的模型 272.3.3 信息融合应用与发展现状 312.4 多Agent信息融合模型 332.4.1 Agent体系结构 332.4.2 MAS体系结构 352.4.3 基于多Agent的信息融合模型 362.5 小结 37参考文献 38第3章 多Agent协调的学习与对策 413.1 引言 413.2 多Agent协调的理论与方法 423.2.1 协调的基本概念 423.2.2 MAS协调及其理论 433.3 Agent的学习模型与方法 463.3.1 强化学习 473.3.2 Markov决策过程 493.3.3 Q学习算法 503.4 多Agent的协调模型 523.4.1 黑板模型 523.4.2 合同网 533.4.3 通用部分全局规划 553.5 多Agent协调的对策与学习方法 553.5.1 Markov对策概述 563.5.2 冲突博弈 593.5.3 多Agent强化学习 603.6 小结 61参考文献 61第4章 基于证据推理的多Agent分布式决策 634.1 引言 634.2 证据推理理论 644.2.1 概率的几种解释及其性质 644.2.2 证据理论的数学基础 644.2.3 证据推理的基本概念 674.2.4 Dempster组合规则 684.2.5 证据决策规则 714.2.6 Dempster组合规则存在的问题 724.3 Agent信息模型 734.3.1 单支置信函数 734.3.2 基于证据推理的Agent信息模型 734.4 可传递置信模型 744.4.1 可传递置信模型的基本结构 744.4.2 辨识框架的粗分和细化 754.4.3 Pignistic概率转换 754.5 基于多Agent的分布式决策融合框架及算法 764.5.1 系统框架 764.5.2 融合中心 774.5.3 决策中心 784.6 仿真算例 794.6.1 赛场状态信息 794.6.2 对手的策略 814.7 多Agent分布式决策融合策略 834.7.1 异构融合 834.7.2 可靠性分配 844.7.3 融合处理 844.7.4 在机器人足球中的应用 844.8 小结 88参考文献 89第5章 强化函数设计方法及其在学习系统的应用 915.1 引言 915.2 强化学习应用中的关键问题 925.2.1 泛化方法 925.2.2 探索与利用的权衡 945.2.3 强化函数与算法结构设计 955.3 强化学习的奖惩函数 955.4 基于平均报酬模型的强化学习算法 985.4.1 报酬模型 985.4.2 *优策略 995.4.3 基于平均报酬模型的强化学习主要算法 995.5 一种基于知识的强化函数设计方法 1015.5.1 强化函数的基本设计思想 1015.5.2 基于知识的强化函数 1035.5.3 仿真实验 1035.6 小结 107参考文献 107第6章 基于分布式强化学习的多Agent协调方法 1096.1 引言 1096.2 多Agent强化学习基本理论 1106.2.1 基于局部合作的Q学习 1116.2.2 基于区域合作的Q学习 1116.2.3 算法的收敛性 1136.3 多Agent强化学习方法的特性 1146.3.1 多Agent强化学习理论及假设的不同 1146.3.2 多Agent强化学习模型及框架的差异 1156.3.3 多Agent强化学习内容的区别 1156.3.4 多Agent强化学习算法设计的迥异 1166.4 多Agent强化学习算法的分类与比较 1166.4.1 绝对合作型多Agent强化学习算法 1166.4.2 绝对竞争型多Agent强化学习算法 1176.4.3 混合型多Agent强化学习算法 1176.4.4 平衡型多Agent强化学习算法 1176.4.5 *佳响应型多Agent强化学习算法 1186.4.6 分析与比较 1186.5 MAS中的分布式强化学习模型及结构 1186.5.1 中央强化学习结构 1196.5.2 *立强化学习结构 1196.5.3 群体强化学习结构 1206.5.4 社会强化学习结构 1206.6 基于分布式强化学习的多Agent协调模型及算法 1206.6.1 协调级 1216.6.2 行为级 1216.6.3 强化信息的分配 1216.6.4 仿真实验 1226.7 小结 129参考文献 130第7章 基于Markov对策的多Agent协调 1327.1 引言 1327.2 多Agent交互的协调与博弈分析 1337.2.1 多Agent协调与博弈的性质 1337.2.2 多Agent协调失败的处理 1347.3 多Agent冲突博弈强化学习模型 1367.3.1 多Agent冲突博弈 1367.3.2 *优策略 1377.3.3 基于后悔值的Q学习模型 1387.4 NashQ学习 1407.5 零和Markov对策和团队Markov对策 1417.5.1 零和Markov对策 1417.5.2 团队Markov对策 1437.6 基于Markov对策的多Agent协调策略 1447.6.1 对策框架 1447.6.2 Team级对策 1447.6.3 Member级对策 1457.6.4 仿真实验 1457.7 小结 155参考文献 155第8章 Agent技术在机器人智能控制系统的应用 1578.1 引言 1578.2 智能机器人系统应用研究 1588.2.1 概况 1588.2.2 传统研究方法的缺陷 1608.2.3 智能机器人系统的共性 1608.3 开放式机器人智能控制系统应用研究 1618.3.1 开放式控制系统的典型特征 1618.3.2 基于PC的开放式控制系统的实现 1628.4 多机器人系统应用研究 1628.4.1 多机器人队形控制 1638.4.2 机器人救援 1658.4.3 多机器人追捕问题 1668.5 总结与展望 1688.5.1 总结 1688.5.2 未来工作展望 169参考文献 170
展开全部
商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服