超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
欠驱动机械臂控制:设计与优化(英文版)

欠驱动机械臂控制:设计与优化(英文版)

出版社:科学出版社出版时间:2023-11-01
开本: B5 页数: 308
本类榜单:工业技术销量榜
中 图 价:¥126.0(7.5折) 定价  ¥168.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

欠驱动机械臂控制:设计与优化(英文版) 版权信息

  • ISBN:9787030768476
  • 条形码:9787030768476 ; 978-7-03-076847-6
  • 装帧:圆脊精装
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

欠驱动机械臂控制:设计与优化(英文版) 内容简介

本书由6章构成:第1章是全书的绪论,主要介绍欠驱动机械臂的构型,回顾欠驱动机械臂的控制与优化设计方法。第2章建立欠驱动机械臂的运动学与动力学模型,分析欠驱动机械臂的运动特性。第3章提出垂直欠驱动机械臂的控制与优化设计方法,实现垂直欠驱动机械臂的摇起与平衡控制目标。第4章给出**关节为被动的平面欠驱动机械臂(具有一阶非完整约束)的控制与优化设计方法,解决机械臂的位姿控制问题。第5章介绍**关节有驱动器的平面欠驱动机械臂(具有二阶非完整约束)的控制与优化设计方法,快速实现该类机械臂的位姿控制目标。第6章论述柔性欠驱动机械臂的控制与优化设计方法,阐述了柔性关节和柔性连杆欠驱动机械臂的控制策略。

欠驱动机械臂控制:设计与优化(英文版) 目录

1 Introduction 1 1.1 Underactuated Manipulators 1 1.2 CharacteristicAnalysis 3 1.3 ControlMethodDesign 4 1.3.1 EnergyBasedControl. 5 1.3.2 SlidingModeControl 6 1.3.3 Backstepping Control 7 1.3.4 Partial Feedback LinearizationControl 8 1.3.5 Approximate LinearizationControl 8 1.3.6 Model ReductionControl 10 1.4 Intelligent and OptimizationControl 11 1.4.1 Fuzzy Control 11 1.4.2 NeuralNetworkControl. 12 1.4.3 Optimization-BasedControl 13 1.5 OrganizationofThisBook 14 References 16 2 Modeling and Characteristics Analysis of Underactuated Manipulators 23 2.1 Dynamic ModelingofTypical Underactuated Manipulators 23 2.1.1 The Inertia Wheel Pendulum Manipulator 24 2.1.2 Two-Link Underactuated Manipulator 26 2.1.3 Multi-link Underactuated Manipulator 30 2.1.4 FlexibleManipulator 39 2.2 Characteristics Analysis of Underactuated Mechanical System 52 2.2.1 Dynamics Analysis 53 2.2.2 Controllability Analysis 55 2.3 Conclusions 57 References 57 3 Control of Vertical Underactuated Manipulator 61 3.1 ALyapunov-Based Unified ControlStrategy 61 3.1.1 Dynamic Model 62 3.1.2 ControlStrategyfor theSwing-Up Area 63 3.1.3 ControlStrategyfortheAttractiveArea 65 3.1.4 Local and Global Stability Analysis 66 3.1.5 SimulationResults 70 3.2 ARewinding Approach-BasedControlStrategy 74 3.2.1 ModelingandAnalysis 74 3.2.2 MotionPlanning 77 3.2.3 TrajectoryTra Control 79 3.2.4 SimulationResults 81 3.3 StableControlofThree-Link Underactuated Manipulators 82 3.3.1 Model andDivisionof Motion Space 84 3.3.2 Swing-UpControllerDesign. 86 3.3.3 SingularityAvoidancein Swing-Up Controller 88 3.3.4 Balance Controller Design 93 3.3.5 SimulationResults 94 3.4 StableControlofn-Link Underactuated Manipulators 96 3.4.1 Dynamic Model and Analysis 96 3.4.2 ControllerDesigninStage1 101 3.4.3 ControllerDesigninStage2 104 3.4.4 SimulationResults 109 3.5 Conclusions 111 References 113 4 Control of Planar Underactuated Manipulator with a Passive First Joint 117 4.1 Motion-StateConstraintAnalysis 117 4.1.1 Integrability 119 4.1.2 Motion-StateConstraint on AngularVelocities 119 4.1.3 Motion-StateConstraint on Angles 120 4.2 Motion-StateConstraint-Based ControlofPlanar Acrobot 124 4.2.1 MotionCharacteristicAnalysis 125 4.2.2 MotionOptimization 126 4.2.3 ControllerDesign. 127 4.2.4 SimulationResults 129 4.3 StableControlofPlanar Three-LinkPAAManipulator 130 4.3.1 MotionStrategyofAnglestoTargetValues 131 4.3.2 PSO-BasedTarget Angle Optimization 133 4.3.3 Target Angle-BasedControllers Design 134 4.3.4 SimulationResults 138 4.4 Two-Stage ControlofPlanarn-Link (n > 3) PAn.1 Manipulator 140 4.4.1 Controllers Designof Stage1for Model Reduction 141 4.4.2ControllersDesignofStage2 143 4.4.3 GA-PSO-BasedTarget Angle Optimization 144 4.4.4 SimulationResults 146 4.5 Intelligent Optimization-BasedContinuous ControlMethod 147 4.5.1 ProblemFormulation. 148 4.5.2 Continuous ControllerDesignfor Active Joints 149 4.5.3 OptimizationofDesignParameters andTarget Angles 150 4.5.4 SimulationResults 152 4.6 Nonlinear MPC-BasedRobustControlMethod 155 4.6.1 ProblemFormulation. 155 4.6.2 ControlIdea 156 4.6.3 Nonlinear Model PredictiveControl-BasedMotion Planning 157 4.6.4 FastTerminal SlidingMode Controller Design 159 4.6.5 SimulationResults 165 4.7 OnlineIterative Correction-BasedRobustControl Method 167 4.7.1 Uncertain Model 167 4.7.2 Uncertain PlanarVirtualPAA System 169 4.7.3 Controller Designfor Model Reduction 170 4.7.4 ControlofPlanarVirtualPAA System 174 4.7.5 OnlineIterativeCorrection 175 4.7.6 SimulationResults 176 4.8 Conclusions 179 References 180 5 Control of Planar Underactuated Manipulator with an Active First Joint 183 5.1 FourierTransformation-BasedControl Method forPlanar Pendubot 183 5.1.1 Dynamic Modelof Planar Pendubot 184 5.1.2 Controllers Design with Disturbance Observer 185 5.1.3 SimulationResults 189 5.2 Energy Attenuation Approach-BasedControlMethod forPlanarAPAA Manipulator 192 5.2.1 TargetAnglesCalculation. 193 5.2.2 StableControl. 197 5.2.3 SimulationResults 202 5.3 ChainedForm-Based ControlMethod forPlanar AAPA Manipulator 204 5.3.1 Model Reduction 204 5.3.2 Controllers Design forthe Manipulator with Reduced Order 211 5.3.3 SimulationResults 215 5.4 AGeneralPositionControlMethodforPlanarUnderactuated Manipulator 220 5.4.1 DynamicModelandControlScheme 221 5.4.2 Bi-Directional MotionPlanning 224 5.4.3 TrajectoryTraControllers Design 228 5.4.4SimulationResults 230 5.5 Conclusions 234 References 234 6 Control of Flexible Manipulator 237 6.1 StableControlforFlexible-Joint Manipulator 237 6.1.1 EIDBasedControlApproach 238 6.1.2 SimulationResults 244 6.2 TrajectoryTraControlforFlexible-JointManipulator 245 6.2.1 Uncertain SystemModel 245 6.2.2 ProblemFormulation. 246 6.2.3 SimulationResults 249 6.3 StableControlforFlexible-LinkManipulator 250 6.3.1 ControllerDesign 251 6.3.2 FGA-BasedOnlineOptimization 254 6.3.3 SimulationResults 256 6.4 Position Control with Zero Residual Vibration forFlexible-LinkManipulator261 6.4.1 ProblemFormulation 261 6.4.2 MotionPlanning 263 6.4.3 TraController Design 268 6.4.4 SimulationResults 270 6.5 PositionControlforFlexible-JointManipulatorwithaPassive Joint 271 6.5.1 PropertyAnalysis 272 6.5.2 Energy-BasedControllerDesign. 273 6.5.3 SimulationResults 275 6.6 PositionControlforFlexible-LinkManipulatorwithaPassive Joint 277 6.6.1 DynamicCouplingAnalysis 277 6.6.2 TargetAnglesSolution 279 6.6.3 Controller DesignfortheActiveJoint 281 6.6.4 ParametersOptimization 283 6.6.5 SimulationResults 284 6.7 Conclusions 287 References 288 Index 291
展开全部

欠驱动机械臂控制:设计与优化(英文版) 作者简介

Jundong Wu was born in Hunan,China,in 1992.Нe received a B.S.degree in microelectronics fromthe School of Electronics Engineering and Computer Science,Peking University,Beijing,China,in 2014,a M.S.degree in electrical engineering from the Schoolof Engineering and Applied Sciences,Harvard Univer-sity,Cambridge,the United States,in 2017,and a Ph.D.degree in mechanical engineering from the Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal,QC,Canada,in 2022.In 2022,he joined the School of Automation,ChinaUniversity of Geosciences as a Professor. His currentresearch interests include underactuated robot control,soft robot modeling and control,and nonlinear systemcontrol,of which he has over 20 paper publications.He currently owns 3 research projects,funded by the National Natural Science Foundation of China and theChina Postdoctoral Science Fund. He was also electedinto the Talent Plan of Hubei Province. Pan Zhang received a B.S.and Ph.D.degrees inengineering from China University of Geosciences,Wuhan,China,in 2015 and 2020,respectively.From 2017 to 2020,she was a Research Internwith the Department of Mechanical,Industrialand Aerospace Engineering,Concordia University,Montreal,QC,Canada.In 2020,she joined the Schoolof Automation,China University of Geosciences,whereshe is currently an Associate Professor. Her currentresearch interests include underactuated robot control,nonlinear system control,and intelligent control.Qingxin Meng received a B.S.degree in engineeringfrom the Hebei University of Technology,Tianjin,China,in 2016,and a Ph.D. degree in engineering fromthe China University of Geosciences,Wuhan,China,in 2021. Qingxin Meng,received a B.S.degree in engineering from the Hebei University of Technology,Tianjin,China,in 2016,and a Ph.D.degree in engineering fromthe China University of Geosciences,Wuhan,China,in 2021.From 2019 to 2021,he was a Research Intern with the Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal,QC,Canada.In 2022,he joined the School of Automation,China University of Geosciences,where he is currently a Professor.His current research interests include flexiblerobot control,vibration control,and nonlinear systemcontrol. Yawu Wang received a B.S.and M.S.degrees inengineering from the Hubei University of Technology,Wuhan,China,in 2011 and 2015,respectively,and a Ph.D.degree in engineering from the China University of Geosciences,Wuhan,China,in 2018.He was a joint doctoral student with the Depart-ment of Mechanical,Industrial and Aerospace Engi-neering,Concordia University,Montreal,QC,Canada,from 2017 to 2018.In 2019,he joined the School of Automation,China University of Geosciences,wherehe is currently a Professor. His current research interestsinclude underactuated robotcontrol,soft robot modelingand control,and intelligent control.

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服