书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
基于文本挖掘的药品不良反应知识发现

基于文本挖掘的药品不良反应知识发现

出版社:知识产权出版社出版时间:2023-06-01
开本: 其他 页数: 188
本类榜单:医学销量榜
中 图 价:¥39.6(6.0折) 定价  ¥66.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

基于文本挖掘的药品不良反应知识发现 版权信息

  • ISBN:9787513081917
  • 条形码:9787513081917 ; 978-7-5130-8191-7
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

基于文本挖掘的药品不良反应知识发现 本书特色

本书在Web 2.0和Health 2.0的背景下,基于设计科学、文本挖掘、信息抽取和机器学习等理论与方法,搭建了社会媒体中药品不良反应知识发现框架;实现了特征向量的提取和多种核方法,并基于集成学习和半监督学习,构建了一系列药品不良反应关系抽取模型,识别了药品实体和症状/疾病实体间的关系类别,减少了社会媒体上数据高维特征的影响及模型对标注数据的依赖,提升了药品不良反应关系抽取模型的性能。通过本书的研究,在理论上丰富和补充了文本挖掘、集成学习和半监督学习的理论研究体系;在实践上,有助于完善药品的安全性信息,为相关部门提供决策支持,实现了数据驱动的药物警戒,是面向人民生命健康进行科技创新的重要实践。

基于文本挖掘的药品不良反应知识发现 内容简介

本书以政府和社会资本合作(PPP)的规范运行、防范政府债务风险为主线,从PPP的创新发展、规范管理、融资管理、应用研究、争议机制等多个视角、多个具体问题、多个疑点难点对如何防范PPP政府债务风险,如何规范操作PPP应用提出了理论分析,指出了解决办法和解决路径,对作者分散的学术实务观点进行了系统的梳理,形成并体现了系统的思想体系。本书对规范应用PPP模式,有效防范PPP应用中的地方政府债务发生有重要的参考价值。

基于文本挖掘的药品不良反应知识发现 目录

目 录
第1章 绪论001
1.1 研究背景与意义 / 001
1.2 国内外研究现状 / 003
1.2.1 社会媒体环境下药品不良反应知识发现研究 / 003
1.2.2 文本挖掘相关研究 / 007
1.2.3 研究述评 / 017
1.3 研究内容与创新点 / 018
1.3.1 研究内容 / 018
1.3.2 创新性 / 021
1.4 研究方法 / 022
第2章 药品不良反应相关文本识别023
2.1 基于层次注意力的多文档表征融合模型 / 023
2.1.1 基于深度学习的深层文本表征 / 025
2.1.2 考虑外部领域知识的特征工程 / 028
2.1.3 层次注意力机制 / 030
2.1.4 实验设置 / 032
2.1.5 实验结果与分析 / 033
2.2 基于多视图主动学习的药品不良反应相关文本识别模型 / 036
2.2.1 基于多视图主动学习的药品不良反应相关文本识别框架 / 037
2.2.2 基于多文档表征的多视图生成机制 / 039
2.2.3 样本选择策略 / 041
2.2.4 MVAL4D的伪代码 / 044
2.2.5 实验设置 / 046
2.2.6 实验结果与分析 / 048
2.3 小结 / 052
第3章 药品不良反应命名实体识别054
3.1 基于传统CRF的药品不良反应实体识别模型构建 / 054
3.1.1 条件随机场 / 054
3.1.2 特征提取 / 055
3.2 基于Bi-LSTM-CRF的药品不良反应实体识别模型构建 / 056
3.3 实验设置 / 058
3.3.1 数据集 / 058
3.3.2 实验过程 / 059
3.3.3 评价指标 / 059
3.4 实验结果与分析 / 059
3.5 小结 / 062
第4章 基于组合学习的药品不良反应关系抽取063
4.1 基于特征的药品不良反应关系抽取 / 063
4.1.1 特征提取 / 063
4.1.2 特征选择 / 069
4.1.3 实验设置 / 071
4.1.4 实验结果与分析 / 074
4.2 基于核方法的药品不良反应关系抽取 / 078
4.2.1 典型核 / 079
4.2.2 实验设置 / 086
4.2.3 实验结果与分析 / 086
4.3 基于组合学习的药品不良反应关系抽取集成框架 / 088
4.3.1 基分类器融合方法 / 088
4.3.2 实验设置 / 092
4.3.3 实验结果与分析 / 093
4.4 基于词汇语义相似度和词性分析的POS-SSDP核方法 / 096
4.4.1 对基于核的关系抽取方法进行改进的必要性 / 096
4.4.2 词汇语义相似度 / 099
4.4.3 POS-SSDP:嵌入词汇语义信息和词性分析的*短依赖路径核 / 103
4.4.4 实验设置 / 104
4.4.5 实验结果与分析 / 106
4.5 小结 / 111
第5章 基于半监督学习和集成学习的药品不良反应关系抽取112
5.1 基于半监督集成学习的药品不良反应关系抽取 / 112
5.1.1 半监督学习 / 112
5.1.2 集成学习 / 115
5.1.3 Co-Ensemble方法 / 118
5.1.4 实验设置 / 121
5.1.5 实验结果与分析 / 123
5.2 基于改进随机子空间的药品不良反应关系抽取 / 131
5.2.1 随机子空间相关工作 / 131
5.2.2 基于分层采样的随机子空间方法 / 132
5.2.3 使用的特征 / 135
5.2.4 实验设置 / 136
5.2.5 实验结果与分析 / 137
5.3 基于改进半监督学习的药品不良反应关系抽取 / 143
5.3.1 使用Lasso改进基于分歧的半监督学习 / 144
5.3.2 实验结果与分析 / 147
5.4 小结 / 150
参考文献152
展开全部

基于文本挖掘的药品不良反应知识发现 作者简介

刘婧,天津财经大学管理信息系统系教师,西北工业大学博士,长期从事数据驱动的决策支持研究,研究方向为文本挖掘和智慧医疗。主持国家自然科学基金青年项目1项,主持中国博士后科学基金面上项目(一等)1项,参与国家级及省部级研究项目3项;发表高水平学术论文10余篇,参与编写教材2部;入选天津市高校“青年后备人才支持计划”,入选天津市“131”创新型人才培养工程第三层次。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服