扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
机器学习技术与应用教程 版权信息
- ISBN:9787030709943
- 条形码:9787030709943 ; 978-7-03-070994-3
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
机器学习技术与应用教程 内容简介
本书内容涵盖机器学习基础知识的各个方面。全书分为10章。第1-3章介绍机器学习的基础知识和数学基础;第4-8章介绍常用的有监督学习算法;第9章介绍常见的无监督学习算法,讨论聚类算法和PCA降维算法的相关知识;第10章介绍关联算法,并对Apriori算法、FP-growth算法的原理进行详细阐述。
机器学习技术与应用教程 目录
第1章 绪论
1.1 机器学习与人工智能概述
1.1.1 人工智能的发展历程
1.1.2 人工智能的四个要素
1.1.3 人工智能与机器学习
1.2 我国人工智能行业发展现状
1.3 机器学习的发展历程
1.4 机器学习的应用
第2章 机器学习基本概念
2.1 机器学习的定义
2.2 机器学习的任务
2.2.1 有监督学习
2.2.2 无监督学习
2.2.3 半监督学习
2.2.4 强化学习
2.3 机器学习中的常用术语
2.4 偏差与方差
2.5 机器学习的工作流程
2.6 Scikit-Learn
2.6.1 Scikit-Learn简介
2.6.2 Scikit-Learn的安装
2.6.3 Scikit-Learn的使用
第3章 机器学习的数学基础
3.1 线性代数
3.1.1 标量、向量、矩阵和张量
3.1.2 矩阵和向量相乘
3.1.3 向量内积
3.1.4 向量外积
3.1.5 行列式和迹
3.2 概率论
3.2.1 离散随机变量
3.2.2 数学期望
3.2.3 二维离散随机变量和统计独立性
3.2.4 二维随机变量函数的数学期望
3.2.5 条件概率
3.2.6 全概率公式和贝叶斯公式
3.2.7 随机向量
3.2.8 期望值、均值向量和协方差矩阵
3.2.9 连续型随机变量
3.3 基尼指数和熵
3.3.1 基尼指数
3.3.2 熵
第4章 线性回归
4.1 线性回归模型
4.1.1 回归问题
4.1.2 线性回归模型实例
4.2 小二乘法
4.2.1 小二乘法的求解过程
4.2.2 线性回归算法的实现
4.2.3 用Scikit-Learn实现线性回归
展开全部
书友推荐
- >
伯纳黛特,你要去哪(2021新版)
伯纳黛特,你要去哪(2021新版)
¥15.9¥49.8 - >
姑妈的宝刀
姑妈的宝刀
¥9.0¥30.0 - >
莉莉和章鱼
莉莉和章鱼
¥13.4¥42.0 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
诗经-先民的歌唱
诗经-先民的歌唱
¥13.5¥39.8 - >
名家带你读鲁迅:朝花夕拾
名家带你读鲁迅:朝花夕拾
¥10.5¥21.0 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
伊索寓言-世界文学名著典藏-全译本
伊索寓言-世界文学名著典藏-全译本
¥9.3¥19.0
本类畅销
-
Photoshop 2022中文版案例教程
¥44.1¥59.8 -
局域网组建、管理与维护(第4版)(微课版)
¥47¥59 -
园林AUTOCAD教程
¥24¥45 -
Python实战编程:从零学Python
¥81¥108 -
Java程序设计基础
¥37¥50 -
数据备份与恢复
¥51.4¥69