超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
相对论量子场论:英文:第2卷:Volume 2:路径积分形式体系:Path integral formalism

相对论量子场论:英文:第2卷:Volume 2:路径积分形式体系:Path integral formalism

出版社:哈尔滨工业大学出版社出版时间:2023-06-01
开本: 25cm 页数: 1册
本类榜单:自然科学销量榜
中 图 价:¥22.8(6.0折) 定价  ¥38.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

相对论量子场论:英文:第2卷:Volume 2:路径积分形式体系:Path integral formalism 版权信息

  • ISBN:9787576707533
  • 条形码:9787576707533 ; 978-7-5767-0753-3
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

相对论量子场论:英文:第2卷:Volume 2:路径积分形式体系:Path integral formalism 内容简介

在经典物理学中,引入场是为了构建因果和局部的物理定律,《相对论量子场论:第2卷 路径积分形式体系(英文)》以引入场为主要内容,以《相对量子场论(**卷)》介绍的内容为基础,重新使用了现代路径积分形式,重点关注量子电动力学和色动力学的应用。全书分为8章,具体内容包括量子力学的路径积分公式、标量场的路径积分、费米子场的路径积分、阿贝尔规范场的路径积分、群与李群、量子色动力学的路径积分公式、QCD的重正化、场论中的拓扑对象、异常的有效拉格朗日量、手征性异常的摄动理论等内容。

相对论量子场论:英文:第2卷:Volume 2:路径积分形式体系:Path integral formalism 目录

Preface Acknowledgements Author biography Units and conventions l Path integral formulation of quantum mechanics 1.1 The transition probability amplitude 1.2 Derivation of the quantum mechanical path integral 1.3 Path integral in terms of the Lagrangian 1.3.1 Summary 1.3.2 Caveats and clarmcatiOns 1.4 Computing simple path integrals 1.4.1 Free particle in the path integral formalism 1.4.2 Quantum harmonic oscillator in the path integral formalism 1.4.3 Path integral for deviations from the classical solution 1.4.4 Connection to our usual understanding of the quantum harmonic oscillator 1.4.5 Generalization to an arbitrary potential and the WKB approximation 1.5 Calculating time—ordered expectation values 1.6 Adding sources 1.7 Asymptotic states and vacuum---vacuum transitions 1.8 Generating functional and Green'S function for quadratic theories 1.8.1 Quantum harmonic oscillator 1.9 Euclidean path integral and the statistical mechanics partition function 1.9.1 Connection to statistical mechanics References 2 Path integrals for scalar fields 2.1 Generating functional for a free real scalar field 2.2 Interacting real scalar field theory 2.2.1 Perturbative expansion ofλφ4 2.2.2 The two—point function 2.23 The four—point function 2.3 Generating functional for connected diagrams 2.4 The sell:energy 2.5 The effective action and vertex functions 2.6 Generating function for one—particle irreducible graphs 2.6.1 Scalar Schwinger—Dyson equation 2.7 Interacting complex scalar fields References 3 Path integrals for fermionic fields 3.1 Finite—dimensional Grassmann algebra 3.1.1 Derivatives of Grassmann variables 3.1.2 Integrals over Grassmann variables 3.1.3 Gaussian integrals of Grassmann variables 3.1.4 Infinite—dimensional Grassmann algebra 3.2 Path integral for a free Dirac field 3.3 Path integral for an interacting Dirac field 3.4 Fermion loops 4 Path integrals for abelian gauge fields 4.1 Free abelian gauge theory 4.2 The photon propagator 4.3 Generating functional for abelian gauge fields in general Lorenz gauge 4.3.1 Faddeev-Popov gauge fixing preview 4.4 Generating functional for QED in general Lorenz gauge 4.5 General Lorenz—gauge QED generating functional to O(e2) 4.6 QED effective action and vertex functions 4.7 Ward—Takahashi identities 4.7.1 Relation between the electron—photon vertex and inverse electron propagator 4.7.2 Electron self-energy and the sub—leading vertex 4.7.3 Extension to higher orders 4.7.4 Implications for renormalization 5 Groups and Lie groups 5.1 Group theory basics 5.1.1 Subgroups 5.1.2 The group center 5.2 Examples 5.2.1 Finite groups 5.2.2 Infinite discrete groups 5.2.3 ContinuouS compact groups 5.3 RepresentatiOns of groups 5.3.1 Equivalent representations 5.3.2 Reducible and irreducible representations 5.3.3 Product representations 5.4 The group U(1) 5.5 The group SU(2) 5.6 The group SU(3) 5.6.1 Quadratic Casimir invariants 5.6.2 Cartan sub—algebra and ladder operators 5.6.3 Irreducible representations 5.6.4 The singlet—D00 5.6 5 The triplet and anti.triplet—D10and D01 5.6.6 Higher dimensional representations 5.6.7 Product representations S.7 The group su(N) 5.8 The Haar measure 5.8.1 General method for constructing invariant Haar measures 5.8.2 Haar measure example—SU(2) References 6 Path integral formulation of quantum chromodynamics 6.1 The Fadeev—Popov method 6.1.1 General Lorenz gauge 6.1.2 Summary 6.2 QCD Feynman rules 6.2.1 Bare quark propagator 6.2.2 Bare gluon propagator 6.2.3 Bare ghost propagator 6.2.4 Quark-gluon vertex 6.2.5 Gluon s
展开全部

相对论量子场论:英文:第2卷:Volume 2:路径积分形式体系:Path integral formalism 作者简介

Dr Michael Strickland is a professor of physics at Kent State University. His primary interest is the physics of the quark-gluon plasma (QGP) and high temperature QFT. The QGP is predicted by QCD to have existed until approximately 10-s seconds after the Big Bang. The QGP is currently being studied terrestrially by experimentalists at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN. Dr Michael Strickland has published research papers on various topics related to the QGP,QFT,relativistic hydrodynamics, and many other topics.In addition, he has co-written a classic text on the physics of neural networks.

商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服