扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
中医基础理论
-
>
高校军事课教程
-
>
思想道德与法治(2021年版)
-
>
毛泽东思想和中国特色社会主义理论体系概论(2021年版)
-
>
中医内科学·全国中医药行业高等教育“十四五”规划教材
-
>
中医诊断学--新世纪第五版
-
>
中药学·全国中医药行业高等教育“十四五”规划教材
人工智能原理与实践 版权信息
- ISBN:9787302634003
- 条形码:9787302634003 ; 978-7-302-63400-3
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 所属分类:>>
人工智能原理与实践 本书特色
本书注重理论算法与实例结合,适用面广。汇聚了新一代人工智能核心技术。
人工智能原理与实践 内容简介
本书系统介绍了人工智能学科的基本原理与算法,着重介绍了基于符号的推理、深度学习以及强化学习等,并提供了Python、Lisp、Prolog语言的入门级教程,还专门介绍了专家系统构造工具CLIPS以及Agent系统开发平台SPADE。 本书共分10章,第1章为绪论,第2章介绍人工智能程序设计语言,之后5章介绍人工智能的基本原理与经典算法,第8章和第9章主要介绍机器学习与深度学习相关算法,*后一章介绍智能Agent。 本书注重人工智能的经典算法及其实用性,可作为高校计算机科学与技术、人工智能及其相关专业高年级本科生及研究生的教材,也可供对人工智能感兴趣的研究与工程人员参考。
人工智能原理与实践 目录
第1章绪论
1.1人工智能的发展概况
1.1.1人工智能的定义
1.1.2人工智能的研究途径
1.1.3人工智能学科的发展
1.2人工智能的目标
1.3人工智能的应用
第2章人工智能程序设计语言
2.1Python语言
2.1.1概述
2.1.2Python基础
2.1.3函数
2.1.4自定义类
2.1.5模块
2.1.6输入输出和文件
2.1.7实例
2.2Lisp语言
2.2.1概述
2.2.2Lisp的基本功能
2.2.3递归与迭代
2.2.4输入输出
2.2.5Lisp的其他功能
2.2.6实例
2.3Prolog语言
2.3.1Prolog语言概述
2.3.2重复与递归
2.3.3列表处理方法
2.3.4字符串处理方法
2.3.5输入输出功能
2.3.6模块
2.3.7实例
第3章知识表示 3.1概述 3.1.1知识与知识表示 3.1.2知识表示的方法 3.2逻辑表示法 3.2.1一阶谓词逻辑 3.2.2谓词逻辑用于知识表示 3.3产生式规则表示法 3.4语义网络表示法 3.4.1语义网络的结构 3.4.2连接词的表示 3.4.3继承性 3.5框架与脚本表示法 3.5.1框架表示法 3.5.2脚本表示法 3.6本体 3.6.1本体的组成与分类 3.6.2本体的建模 3.6.3OWL 3.7知识图谱 3.7.1构建知识图谱 3.7.2存储知识图谱 3.7.3知识图谱推理 第4章基于搜索的问题求解方法 4.1状态空间搜索 4.1.1概述 4.1.2回溯策略 4.1.3图搜索策略 4.1.4任一路径的图捜索 4.1.5路径的图捜索 4.1.6与或图的捜索 4.2博弈树搜索 4.2.1概述 4.2.2极小极大过程 4.2.3αβ剪枝过程 4.2.4蒙特卡罗树搜索 第5章基于符号的推理 5.1基础概念 5.2归结反演 5.2.1子句 5.2.2归结原理 5.2.3归结反演的控制策略 5.2.4求解填空问题 5.3基于规则的演绎系统 5.3.1正向演绎系统 5.3.2逆向演绎系统 5.4非单调推理 5.4.1封闭世界假设 5.4.2谓词完备化 5.4.3限制 5.4.4缺省推理 第6章不确定性推理 6.1引言 6.2概率方法 6.2.1基本概念 6.2.2实例 6.3可信度方法 6.3.1知识的不确定性 6.3.2证据的不确定性 6.3.3不确定性推理算法 6.4主观贝叶斯方法 6.4.1知识的不确定性表示 6.4.2证据的不确定性表示 6.4.3不确定性推理算法 6.5证据理论 6.5.1基本理论 6.5.2证据的组合 6.5.3基本算法 6.5.4实例 第7章专家系统 7.1概述 7.2基于规则的专家系统 7.2.1元知识结构 7.2.2黑板模型 7.2.3黑板控制结构 7.3其他专家系统结构 7.3.1基于框架的专家系统 7.3.2基于模型的专家系统 7.3.3基于Web的专家系统 7.4专家系统实例 7.4.1MYCIN 7.4.2AM系统 7.5专家系统开发工具CLIPS 7.5.1事实 7.5.2规则 7.5.3其他 7.5.4实例 第8章机器学习与计算智能 8.1概述 8.2分类与聚类 8.2.1分类 8.2.2聚类 8.3决策树 8.3.1构造决策树 8.3.2决策树剪枝 8.4支持向量机 8.4.1分类问题 8.4.2回归问题 8.4.3单类问题 8.4.4学习算法 8.4.5结构化数据核函数 8.5k均值聚类 8.6强化学习 8.6.1马尔可夫决策过程 8.6.2值函数和贝尔曼方程 8.6.3有模型学习 8.6.4无模型学习 8.7演化计算 8.7.1遗传算法 8.7.2遗传算法的理论基础 8.7.3遗传规划 8.7.4演化策略 8.7.5演化规划 8.8群体智能算法 8.8.1蚁群算法 8.8.2粒子群算法 第9章神经网络与深度学习 9.1基础知识 9.2感知机 9.3多层前向网络 9.4Hopfield网络 9.5卷积神经网络 9.5.1LeNet5 9.5.2常用模型 9.5.3训练 9.5.4AlexNet 9.5.5VGGNet 9.5.6Inception网络 9.5.7残差网络 9.6循环与递归神经网络 9.6.1BPTT算法 9.6.2LSTM 9.6.3递归神经网络 9.7深度学习应用与平台 9.7.1机器视觉应用 9.7.2深度学习平台 第10章智能Agent 10.1Agent概述 10.1.1基本概念 10.1.2Agent理论 10.1.3Agent系统结构 10.2多Agent系统 10.2.1概述 10.2.2多Agent系统的结构 10.2.3Agent通信语言 10.2.4多Agent系统的协商机制 10.2.5多Agent系统的应用 10.3移动Agent 10.4Agent系统开发平台
第3章知识表示 3.1概述 3.1.1知识与知识表示 3.1.2知识表示的方法 3.2逻辑表示法 3.2.1一阶谓词逻辑 3.2.2谓词逻辑用于知识表示 3.3产生式规则表示法 3.4语义网络表示法 3.4.1语义网络的结构 3.4.2连接词的表示 3.4.3继承性 3.5框架与脚本表示法 3.5.1框架表示法 3.5.2脚本表示法 3.6本体 3.6.1本体的组成与分类 3.6.2本体的建模 3.6.3OWL 3.7知识图谱 3.7.1构建知识图谱 3.7.2存储知识图谱 3.7.3知识图谱推理 第4章基于搜索的问题求解方法 4.1状态空间搜索 4.1.1概述 4.1.2回溯策略 4.1.3图搜索策略 4.1.4任一路径的图捜索 4.1.5路径的图捜索 4.1.6与或图的捜索 4.2博弈树搜索 4.2.1概述 4.2.2极小极大过程 4.2.3αβ剪枝过程 4.2.4蒙特卡罗树搜索 第5章基于符号的推理 5.1基础概念 5.2归结反演 5.2.1子句 5.2.2归结原理 5.2.3归结反演的控制策略 5.2.4求解填空问题 5.3基于规则的演绎系统 5.3.1正向演绎系统 5.3.2逆向演绎系统 5.4非单调推理 5.4.1封闭世界假设 5.4.2谓词完备化 5.4.3限制 5.4.4缺省推理 第6章不确定性推理 6.1引言 6.2概率方法 6.2.1基本概念 6.2.2实例 6.3可信度方法 6.3.1知识的不确定性 6.3.2证据的不确定性 6.3.3不确定性推理算法 6.4主观贝叶斯方法 6.4.1知识的不确定性表示 6.4.2证据的不确定性表示 6.4.3不确定性推理算法 6.5证据理论 6.5.1基本理论 6.5.2证据的组合 6.5.3基本算法 6.5.4实例 第7章专家系统 7.1概述 7.2基于规则的专家系统 7.2.1元知识结构 7.2.2黑板模型 7.2.3黑板控制结构 7.3其他专家系统结构 7.3.1基于框架的专家系统 7.3.2基于模型的专家系统 7.3.3基于Web的专家系统 7.4专家系统实例 7.4.1MYCIN 7.4.2AM系统 7.5专家系统开发工具CLIPS 7.5.1事实 7.5.2规则 7.5.3其他 7.5.4实例 第8章机器学习与计算智能 8.1概述 8.2分类与聚类 8.2.1分类 8.2.2聚类 8.3决策树 8.3.1构造决策树 8.3.2决策树剪枝 8.4支持向量机 8.4.1分类问题 8.4.2回归问题 8.4.3单类问题 8.4.4学习算法 8.4.5结构化数据核函数 8.5k均值聚类 8.6强化学习 8.6.1马尔可夫决策过程 8.6.2值函数和贝尔曼方程 8.6.3有模型学习 8.6.4无模型学习 8.7演化计算 8.7.1遗传算法 8.7.2遗传算法的理论基础 8.7.3遗传规划 8.7.4演化策略 8.7.5演化规划 8.8群体智能算法 8.8.1蚁群算法 8.8.2粒子群算法 第9章神经网络与深度学习 9.1基础知识 9.2感知机 9.3多层前向网络 9.4Hopfield网络 9.5卷积神经网络 9.5.1LeNet5 9.5.2常用模型 9.5.3训练 9.5.4AlexNet 9.5.5VGGNet 9.5.6Inception网络 9.5.7残差网络 9.6循环与递归神经网络 9.6.1BPTT算法 9.6.2LSTM 9.6.3递归神经网络 9.7深度学习应用与平台 9.7.1机器视觉应用 9.7.2深度学习平台 第10章智能Agent 10.1Agent概述 10.1.1基本概念 10.1.2Agent理论 10.1.3Agent系统结构 10.2多Agent系统 10.2.1概述 10.2.2多Agent系统的结构 10.2.3Agent通信语言 10.2.4多Agent系统的协商机制 10.2.5多Agent系统的应用 10.3移动Agent 10.4Agent系统开发平台
展开全部
书友推荐
- >
经典常谈
经典常谈
¥12.7¥39.8 - >
回忆爱玛侬
回忆爱玛侬
¥23.0¥32.8 - >
莉莉和章鱼
莉莉和章鱼
¥13.4¥42.0 - >
随园食单
随园食单
¥15.4¥48.0 - >
名家带你读鲁迅:朝花夕拾
名家带你读鲁迅:朝花夕拾
¥10.5¥21.0 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
史学评论
史学评论
¥22.7¥42.0 - >
我与地坛
我与地坛
¥16.5¥28.0
本类畅销
-
食品添加剂
¥33.5¥45 -
VB语言程序设计
¥29.9¥39.8 -
C语言程序设计习题与实验指导
¥9.1¥18 -
地下建筑结构-(第三版)-(赠课件)
¥49.4¥55 -
模具制图
¥37.8¥49 -
工程机械结构认知
¥10.5¥22