书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
Transformers自然语言处理 修订版(影印版)

Transformers自然语言处理 修订版(影印版)

作者:LewisTunstall
出版社:东南大学出版社出版时间:2023-02-01
开本: 其他 页数: 405
中 图 价:¥79.7(6.7折) 定价  ¥119.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Transformers自然语言处理 修订版(影印版) 版权信息

  • ISBN:9787576605891
  • 条形码:9787576605891 ; 978-7-5766-0589-1
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

Transformers自然语言处理 修订版(影印版) 内容简介

自2017年推出以来,transformer已迅速成为在各种自然语言处理任务上实现很好结果的主导架构。如果你是一名数据科学家或程序员,这本实践用书,现已改为全彩印刷,将向你展示如何使用基于python的深度学习库Hugging Face Transformers训练和扩展这些大型模型。Transformers已经被用来撰写真实的新闻故事、改进Google搜索查询,甚至是创建会讲老套笑话的聊天机器人。在这本指南中,作者Lewis Tunstall、Leandro von Werra、Thomas Wolf是Hugging Face Transformers的创建者,他们通过实践方法来教你如何使用Transformer以及如何将其集成到你的应用中。你将快速学习可以由transformer帮助解决的各种任务。

Transformers自然语言处理 修订版(影印版) 目录

Foreword Preface 1. Hello Transformers The Encoder-Decoder Framework Attention Mechanisms Transfer Learning in NLP Hugging Face Transformers: Bridging the Gap A Tour of Transformer Applications Text Classification Named Entity Recognition Question Answering Summarization Translation Text Generation The Hugging Face Ecosystem The Hugging Face Hub Hugging Face Tokenizers Hugging Face Datasets Hugging Face Accelerate Main Challenges with Transformers Conclusion 2. Text Classification The Dataset A First Look at Hugging Face Datasets From Datasets to DataFrames Looking at the Class Distribution How Long Are Our Tweets? From Text to Tokens Character Tokenization Word Tokenization Subword Tokenization Tokenizing the Whole Dataset Training a Text Classifier Transformers as Feature Extractors Fine-Tuning Transformers Conclusion 3. Transformer Anatomy The Transformer Architecture The Encoder Self-Attention The Feed-Forward Layer Adding Layer Normalization Positional Embeddings Adding a Classification Head The Decoder Meet the Transformers The Transformer Tree of Life The Encoder Branch The Decoder Branch The Encoder-Decoder Branch Conclusion 4. Multilingual Named Entity Recognition The Dataset Multilingual Transformers A Closer Look at Tokenization The Tokenizer Pipeline The SentencePiece Tokenizer Transformers for Named Entity Recognition The Anatomy of the Transformers Model Class Bodies and Heads Creating a Custom Model for Token Classification Loading a Custom Model Tokenizing Texts for NER Performance Measures Fine-Tuning XLM-RoBERTa Error Analysis Cross-Lingual Transfer When Does Zero-Shot Transfer Make Sense? Fine-Tuning on Multiple Languages at Once Interacting with Model Widgets Conclusion 5. Text Generation The Challenge with Generating Coherent Text Greedy Search Decoding Beam Search Decoding Sampling Methods Top-k and Nucleus Sampling Which Decoding Method Is Best? Conclusion 6. Summarization The CNN/DailyMail Dataset Text Summarization Pipelines Summarization Baseline GPT-2 T5 BART PEGASUS Comparing Different Summaries Measuring the Quality of Generated Text BLEU ROUGE Evaluating PEGASUS on the CNN/DailyMail Dataset Training a Summarization Model Evaluating PEGASUS on SAMSum Fine-Tuning PEGASUS Generating Dialogue Summaries Conclusion 7. Question Answering Building a Review-Based QA System The Dataset Extracting Answers from Text Using Haystack to Build a QA Pipeline Improving Our QA Pipeline Evaluating the Retriever Evaluating the Reader Domain Adaptation Evaluating the Whole QA Pipeline Going Beyond Extractive QA Conclusion 8. Making Transformers Efficient in Production Intent Detection as a Case Study Creating a Performance Benchmark Making Models Smaller via Knowledge Distillation Knowledge Distillation for Fine-Tuning Knowledge Distillation for Pretraining Creating a Knowledge Distillation Trainer Choosing a Good Student Initialization Finding Good Hyperparameters with Optuna Benchmarking Our Distilled Model Making Models Faster with Quantization Benchmarking Our Quantized Model Optimizing Inference with ONNX and the ONNX Runtime Making Models Sparser with Weight Pruning Sparsity in Deep Neural Networks Weight Pruning Methods Conclusion 9. Dealing with Few to No Labels Building a GitHub Issues Tagger Getting the Data Preparing the Data Creating Training Sets Creating Training Slices Implementing a Naive Bayesline Working with No Labeled Data Working with a Few Labels Data Augmentation Using Embeddings as
展开全部

Transformers自然语言处理 修订版(影印版) 作者简介

刘易斯·汤斯顿,Lewis Tunstall是Hugging Face的机器学习工程师。他目前的工作重点是为NLP社区开发工具并教人们如何有效地使用这些工具。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服