扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
经典数值算法及其Maple实现 版权信息
- ISBN:9787302625070
- 条形码:9787302625070 ; 978-7-302-62507-0
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
经典数值算法及其Maple实现 本书特色
光纤传感技术经过五十多年的学术研究与技术发展,近几年来形成了加速发展的趋势。本书围绕“光纤上的实验室(Lab-on-fiber)”这一主题,由国内多个在该研究方向上具有代表性的研究组撰写各自取得的主要成就及其重要的研究进展。
经典数值算法及其Maple实现 内容简介
本书主要介绍了求解数值问题的经典算法的算法原理及其Maple实现,偏重于算法的实现,强调例题的分析和算法的应用。内容包括: 线性方程组的直接解法和迭代解法,插值和函数逼近,数值积分,数值优化,矩阵的特征值问题,解非线性方程和方程组的数值方法,常微分方程和偏微分方程的数值解法。
经典数值算法及其Maple实现 目录
第1章 引论
1.1 误差的来源
1.1.1 舍入误差
1.1.2 截断误差
1.2 误差的传播
1.2.1 尽量避免两个相近的数相减
1.2.2 防止接近零的数作除数
1.2.3 防止大数吃小数
1.2.4 简化计算步骤,减少运算次数
1.3 数值算法的稳定性
第2章 线性方程组的解法
2.1 Gauss顺序消元法
2.2 Gauss列主元消元法
2.3 Gauss-Jordan消元法
2.4 LU分解法
2.5 平方根法
2.6 改进的平方根法
2.7 追赶法
2.8 QR分解法
2.9 方程组的性态与误差分析
2.9.1 误差分析
2.9.2 迭代改善
2.10 Jacobi迭代法
2.11 Gauss-Seidel迭代法
2.12 松弛迭代法
2.13 迭代法的收敛性分析
第3章 函数的插值
3.1 Lagrange插值
3.2 Newton插值
3.3 Hermite插值
3.4 分段三次Hermite插值
3.5 三次样条插值函数
3.5.1 紧压样条插值函数
3.5.2 端点曲率调整样条插值函数
3.5.3 非节点样条插值函数
3.5.4 周期样条插值函数
第4章 函数的逼近
4.1 *佳一致逼近多项式
4.2 近似*佳一致逼近多项式
4.3 *佳平方逼近多项式
4.4 用正交多项式作*佳平方逼近
4.4.1 用Legendre多项式作*佳平方逼近
4.4.2 用Chebyshev多项式作*佳平方逼近
4.5 曲线拟合的*小二乘法
4.5.1 线性*小二乘拟合
4.5.2 用正交多项式作*小二乘拟合
4.5.3 非线性*小二乘拟合举例
4.6 Pade有理逼近
第5章 数值积分
5.1 复合求积公式
5.1.1 复合梯形公式
5.1.2 复合Simpson公式
5.1.3 复合Cotes公式
5.2 变步长的求积公式
5.2.1 变步长的梯形公式
5.2.2 变步长的Simpson公式
5.2.3 变步长的Cotes公式
5.3 Romberg积分法
5.4 自适应积分法
5.5 Gauss求积公式
5.5.1 Gauss-Legendre求积公式
5.5.2 Gauss-Chebyshev求积公式
5.5.3 Gauss-Laguerre求积公式
5.5.4 Gauss-Hermite求积公式
5.6 预先给定节点的Gauss求积公式
5.6.1 Gauss-Radau求积公式
5.6.2 Gauss-Lobatto求积公式
5.7 二重积分的数值计算
5.7.1 复合Simpson公式
5.7.2 变步长的Simpson公式
5.7.3 复合Gauss公式
5.8 三重积分的数值计算
第6章 数值优化
6.1 黄金分割搜索法
6.2 Fibonacci搜索法
6.3 二次逼近法
6.4 三次插值法
6.5 Newton法
第7章 矩阵特征值与特征向量的计算
7.1 上Hessenberg矩阵和QR分解
7.1.1 化矩阵为上Hessenberg矩阵
7.1.2 矩阵的QR分解
7.2 乘幂法与反幂法
7.2.1 乘幂法
7.2.2 反幂法
7.2.3 移位反幂法
7.3 Jacobi方法
7.4 对称QR方法
7.5 QR方法
7.5.1 上Hessenberg的QR方法
7.5.2 原点移位的QR方法
7.5.3 双重步QR方法
第8章 非线性方程求根
8.1 迭代法
8.2 迭代法的加速收敛
8.2.1 Aitken加速法
8.2.2 Steffensen加速法
8.3 二分法
8.4 试位法
8.5 Newton-Raphson法
8.6 割线法
8.7 改进的Newton法
8.8 Halley法
8.9 Brent法
8.10 抛物线法
第9章 非线性方程组的数值解法
9.1 不动点迭代法
9.2 Newton法
9.3 修正Newton法
9.4 拟Newton法
9.5 数值延拓法
9.6 参数微分法
第10章 常微分方程初值问题的数值解法
10.1 Euler方法
10.1.1 Euler方法
10.1.2 改进的Euler方法
10.2 Runge-Kutta方法
10.2.1 二阶Runge-Kutta方法
10.2.2 三阶Runge-Kutta方法
10.2.3 四阶Runge-Kutta方法
10.3 高阶Runge-Kutta方法
10.3.1 Kutta-Nystrom五阶六级方法
10.3.2 Huta六阶八级方法
10.4 Runge-Kutta-Fehlberg方法
10.5 线性多步法
10.6 预测-校正方法
10.6.1 四阶Adams预测-校正方法
10.6.2 改进的Adams四阶预测-校正方法
10.6.3 Hamming预测-校正方法
10.7 变步长的多步法
10.8 Gragg外推法
10.9 常微分方程组和高阶微分方程的数值解法
10.9.1 常微分方程组的数值解法
10.9.2 高阶微分方程的数值解法
第11章 常微分方程边值问题的数值解法
11.1 打靶法
11.1.1 线性边值问题的打靶法
11.1.2 非线性边值问题的打靶法
11.2 有限差分法
11.2.1 线性边值问题的差分方法
11.2.2 非线性边值问题的差分方法
第12章 偏微分方程的数值解法
12.1 椭圆型方程
12.2 抛物型方程
12.2.1 显式向前Euler方法
12.2.2 隐式向后Euler方法
12.2.3 Crank-Nicholson方法
12.2.4 二维抛物型方程
12.3 双曲型方程
12.3.1 一维波动方程
12.3.2 二维波动方程
参考文献
程序索引
1.1 误差的来源
1.1.1 舍入误差
1.1.2 截断误差
1.2 误差的传播
1.2.1 尽量避免两个相近的数相减
1.2.2 防止接近零的数作除数
1.2.3 防止大数吃小数
1.2.4 简化计算步骤,减少运算次数
1.3 数值算法的稳定性
第2章 线性方程组的解法
2.1 Gauss顺序消元法
2.2 Gauss列主元消元法
2.3 Gauss-Jordan消元法
2.4 LU分解法
2.5 平方根法
2.6 改进的平方根法
2.7 追赶法
2.8 QR分解法
2.9 方程组的性态与误差分析
2.9.1 误差分析
2.9.2 迭代改善
2.10 Jacobi迭代法
2.11 Gauss-Seidel迭代法
2.12 松弛迭代法
2.13 迭代法的收敛性分析
第3章 函数的插值
3.1 Lagrange插值
3.2 Newton插值
3.3 Hermite插值
3.4 分段三次Hermite插值
3.5 三次样条插值函数
3.5.1 紧压样条插值函数
3.5.2 端点曲率调整样条插值函数
3.5.3 非节点样条插值函数
3.5.4 周期样条插值函数
第4章 函数的逼近
4.1 *佳一致逼近多项式
4.2 近似*佳一致逼近多项式
4.3 *佳平方逼近多项式
4.4 用正交多项式作*佳平方逼近
4.4.1 用Legendre多项式作*佳平方逼近
4.4.2 用Chebyshev多项式作*佳平方逼近
4.5 曲线拟合的*小二乘法
4.5.1 线性*小二乘拟合
4.5.2 用正交多项式作*小二乘拟合
4.5.3 非线性*小二乘拟合举例
4.6 Pade有理逼近
第5章 数值积分
5.1 复合求积公式
5.1.1 复合梯形公式
5.1.2 复合Simpson公式
5.1.3 复合Cotes公式
5.2 变步长的求积公式
5.2.1 变步长的梯形公式
5.2.2 变步长的Simpson公式
5.2.3 变步长的Cotes公式
5.3 Romberg积分法
5.4 自适应积分法
5.5 Gauss求积公式
5.5.1 Gauss-Legendre求积公式
5.5.2 Gauss-Chebyshev求积公式
5.5.3 Gauss-Laguerre求积公式
5.5.4 Gauss-Hermite求积公式
5.6 预先给定节点的Gauss求积公式
5.6.1 Gauss-Radau求积公式
5.6.2 Gauss-Lobatto求积公式
5.7 二重积分的数值计算
5.7.1 复合Simpson公式
5.7.2 变步长的Simpson公式
5.7.3 复合Gauss公式
5.8 三重积分的数值计算
第6章 数值优化
6.1 黄金分割搜索法
6.2 Fibonacci搜索法
6.3 二次逼近法
6.4 三次插值法
6.5 Newton法
第7章 矩阵特征值与特征向量的计算
7.1 上Hessenberg矩阵和QR分解
7.1.1 化矩阵为上Hessenberg矩阵
7.1.2 矩阵的QR分解
7.2 乘幂法与反幂法
7.2.1 乘幂法
7.2.2 反幂法
7.2.3 移位反幂法
7.3 Jacobi方法
7.4 对称QR方法
7.5 QR方法
7.5.1 上Hessenberg的QR方法
7.5.2 原点移位的QR方法
7.5.3 双重步QR方法
第8章 非线性方程求根
8.1 迭代法
8.2 迭代法的加速收敛
8.2.1 Aitken加速法
8.2.2 Steffensen加速法
8.3 二分法
8.4 试位法
8.5 Newton-Raphson法
8.6 割线法
8.7 改进的Newton法
8.8 Halley法
8.9 Brent法
8.10 抛物线法
第9章 非线性方程组的数值解法
9.1 不动点迭代法
9.2 Newton法
9.3 修正Newton法
9.4 拟Newton法
9.5 数值延拓法
9.6 参数微分法
第10章 常微分方程初值问题的数值解法
10.1 Euler方法
10.1.1 Euler方法
10.1.2 改进的Euler方法
10.2 Runge-Kutta方法
10.2.1 二阶Runge-Kutta方法
10.2.2 三阶Runge-Kutta方法
10.2.3 四阶Runge-Kutta方法
10.3 高阶Runge-Kutta方法
10.3.1 Kutta-Nystrom五阶六级方法
10.3.2 Huta六阶八级方法
10.4 Runge-Kutta-Fehlberg方法
10.5 线性多步法
10.6 预测-校正方法
10.6.1 四阶Adams预测-校正方法
10.6.2 改进的Adams四阶预测-校正方法
10.6.3 Hamming预测-校正方法
10.7 变步长的多步法
10.8 Gragg外推法
10.9 常微分方程组和高阶微分方程的数值解法
10.9.1 常微分方程组的数值解法
10.9.2 高阶微分方程的数值解法
第11章 常微分方程边值问题的数值解法
11.1 打靶法
11.1.1 线性边值问题的打靶法
11.1.2 非线性边值问题的打靶法
11.2 有限差分法
11.2.1 线性边值问题的差分方法
11.2.2 非线性边值问题的差分方法
第12章 偏微分方程的数值解法
12.1 椭圆型方程
12.2 抛物型方程
12.2.1 显式向前Euler方法
12.2.2 隐式向后Euler方法
12.2.3 Crank-Nicholson方法
12.2.4 二维抛物型方程
12.3 双曲型方程
12.3.1 一维波动方程
12.3.2 二维波动方程
参考文献
程序索引
展开全部
书友推荐
- >
伯纳黛特,你要去哪(2021新版)
伯纳黛特,你要去哪(2021新版)
¥25.4¥49.8 - >
我从未如此眷恋人间
我从未如此眷恋人间
¥24.9¥49.8 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
李白与唐代文化
李白与唐代文化
¥8.9¥29.8 - >
经典常谈
经典常谈
¥28.3¥39.8 - >
唐代进士录
唐代进士录
¥25.9¥39.8 - >
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
¥6.3¥14.0 - >
姑妈的宝刀
姑妈的宝刀
¥13.5¥30.0
本类畅销
-
普林斯顿微积分读本-(修订版)
¥69.3¥99 -
怎样解题
¥17.2¥29 -
数学-应用与思考
¥16.1¥32.8 -
高等代数思想方法分析及应用研究
¥25.3¥76 -
高等代数典型问题研究与实例探析
¥30.4¥92 -
数字唬人:用常识看穿无所不在的数字陷阱
¥16¥36.8