-
>
湖南省志(1978-2002)?铁路志
-
>
公路车宝典(ZINN的公路车维修与保养秘籍)
-
>
晶体管电路设计(下)
-
>
基于个性化设计策略的智能交通系统关键技术
-
>
德国克虏伯与晚清火:贸易与仿制模式下的技术转移
-
>
花样百出:贵州少数民族图案填色
-
>
识木:全球220种木材图鉴
沥青路面有限元仿真原理与方法 版权信息
- ISBN:9787030743282
- 条形码:9787030743282 ; 978-7-03-074328-2
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
沥青路面有限元仿真原理与方法 本书特色
适读人群 :道路专业人员,道路工程专业研究生通过有限元仿真,探究沥青路面结构与材料力学行为特性,揭示沥青路面病害发展规律,为沥青路面设计提供指导
沥青路面有限元仿真原理与方法 内容简介
一带一路倡议的实施以及交通强国战略的推进,极大的扩展了我国公路运输行业涉及的自然条件与服务对象。日益复杂的气候条件、交通条件与地质条件,对我国的公路的结构设计、材料设计以及运营养护工作都提出的严峻的考验。然而传统的路面设计方法与病害预估手段更依赖于建设与工程经验,对于公路建设面临的挑战缺乏普遍的适用性,也了结构的创新材料结构的协同设计。本书以有限元原理为基本方法,详细地介绍了沥青混合料本构模型及其数值应用,包含黏弹塑性本构模型,连续损伤本构模型,分数阶黏弹性模型等一系列现阶段的近期新研究成果。在此基础上,进一步介绍了荷载与温度两种主要的路面病害影响条件的有限元建模方法,并以案例的形式阐述了我国沥青路面面临的车辙与裂缝两种主要病害的分析方法。
沥青路面有限元仿真原理与方法 目录
前言
第1章 绪论 1
1.1 道路工程中的典型问题 1
1.2 用有限元解决道路工程典型问题的基本方法 2
1.3 本书内容安排 3
参考文献 3
第2章 有限元方法简介 5
2.1 有限单元法的近似 5
2.2 一维有限元方法 9
2.3 三维有限元方法 11
2.4 有限元软件ABAQUS简介 15
参考文献 16
第3章 沥青混合料本构模型的有限元实现 18
3.1 用户子程序接口和应用程序 18
3.1.1 用户材料子程序(UMAT) 18
3.1.2 应用程序 21
3.1.3 ABAQUS主程序与UMAT子程序协同工作过程 21
3.2 黏弹-黏塑性本构模型的UMAT编写 22
3.2.1 黏弹-黏塑性本构模型理论 22
3.2.2 黏弹-黏塑性模型数值实现方式 26
3.2.3 黏弹-黏塑性本构模型UMAT编写方法 29
3.3 黏弹-损伤本构模型的UMAT编写 38
3.3.1 黏弹-损伤本构模型理论 38
3.3.2 黏弹-损伤本构模型UMAT编写方法 44
参考文献 51
第4章 沥青混合料损伤演化仿真 53
4.1 基于细观结构的沥青混合料力学本构模型研究 53
4.1.1 分数阶Zener模型有限元数值算法及验证 53
4.1.2 黏弹性连续损伤力学模型(VECD) 65
4.1.3 黏聚带断裂力学模型(CZM) 67
4.2 沥青混合料本构模型参数获取 72
4.2.1 基于分数阶本构模型的沥青砂浆黏弹性参数获取 72
4.2.2 VECD试验结果分析及参数获取 78
4.2.3 CZM试验结果分析及参数获取 81
4.3 基于细观结构的沥青混合料疲劳损伤研究 85
4.3.1 沥青混合料细观疲劳损伤有限元模型验证 85
4.3.2 沥青混合料细观特征筛选及虚拟试件生成 87
4.3.3 细观特征对沥青混合料疲劳损伤发展的影响 92
参考文献 99
第5章 沥青路面结构疲劳仿真 101
5.1 沥青路面的温度场分析 101
5.1.1 沥青路面温度场基本理论 101
5.1.2 路面温度场边界条件 102
5.1.3 路面材料热学参数 104
5.1.4 沥青路面温度场分析 106
5.2 沥青路面结构疲劳分析 109
5.2.1 沥青路面黏弹性与损伤基本响应 109
5.2.2 疲劳发展影响因素 112
5.2.3 疲劳发展规律 119
参考文献 121
第6章 沥青混合料低温断裂仿真 123
6.1 沥青砂浆CZM参数获取 123
6.1.1 I型断裂 123
6.1.2 II型断裂 125
6.2 沥青混合料细观有限元模型构建方法 125
6.2.1 CT数字图像处理及细观结构重构 125
6.2.2 随机投放算法及随机试件生成 128
6.3 沥青混合料细观断裂有限元模型 132
6.3.1 有限元模型构建 132
6.3.2 有限元模型验证 136
6.4 基于细观结构的沥青混合料低温断裂研究 140
6.4.1 集料特征对沥青混合料低温开裂的影响 140
6.4.2 空隙特征对沥青混合料低温开裂的影响 143
参考文献 145
第7章 沥青路面结构开裂仿真 146
7.1 疲劳本构模型的构建 146
7.1.1 疲劳极限的确定 146
7.1.2 剩余强度的概念 154
7.1.3 疲劳损伤临界值的确定 156
7.1.4 剩余强度的衰变模型研究 158
7.2 疲劳损伤-断裂全过程有限元建模方法 163
7.2.1 疲劳损伤与断裂相结合的概念 163
7.2.2 疲劳损伤-断裂全过程模拟方法的提出与应用 164
7.2.3 用户损伤起始准则子程序UDMGINI简介 166
7.2.4 疲劳损伤-断裂全过程模拟的有限元实现 168
7.3 沥青路面疲劳损伤-断裂全过程模拟分析 170
7.3.1 路面结构疲劳损伤-断裂全过程研究 170
7.3.2 力学响应分析 174
7.3.3 疲劳损伤累积规律分析 176
7.3.4 基层反射裂缝疲劳扩展过程研究 178
参考文献 183
第8章 沥青路面结构车辙仿真 185
8.1 路面-荷载相互作用分析 185
8.1.1 标准子午线轮胎有限元建模 185
8.1.2 轮胎-路面相互作用分析 187
8.1.3 荷载简化模型与数值实现 188
8.2 沥青路面永久变形分析 192
8.2.1 沥青路面黏塑性基本响应分析 192
8.2.2 永久变形发展影响因素 194
8.2.3 柔性基层沥青路面车辙发展与分布规律 199
参考文献 202
沥青路面有限元仿真原理与方法 节选
第1章绪论 1.1道路工程中的典型问题 自20世纪90年代,我国开始大规模修建沥青路面,经过约30年的快速发展,目前已经建成世界规模**的公路网[11。2001~2010年的10年间,我国沥青路面的病害以松散、拥包、网裂、路基沉陷等一系列早期病害为主。到了21世纪的第二个10年,沥青路面在设计、施工、养护、管理方面都有了长足的进步,路面的病害也从早期病害转变为以裂缝与车辙为主的长期病害。 中国高等级沥青路面中,半刚性基层结构沥青路面占据绝对的多数。半刚性基层沥青路面存在反射裂缝以及疲劳裂缝两种形式。基于半刚性基层的固有性质,大体积混凝土结构必然会产生干缩与温缩裂缝,路面在基层裂缝位置形成薄弱点,逐渐发展出反射裂缝。这种反射裂缝尽管可以通过减少基层水泥含量、使用低收缩水泥等方式进行改善,却仍是不可避免的。但好在反射裂缝的存在并没有显著降低半刚性基层的整体结构强度,只要裂缝位置修补及时,避免被雨水渗入引发进一步的水损害,反射裂缝并不会显著降低路面的服务水平。 与反射裂缝相对的,是疲劳裂缝。柔性基层沥青路面的疲劳主要产生于沥青层底部,半刚性基层结构的疲劳主要产生于半刚性基层底部。两种路面结构尽管在材料与受力状态上存在差异,但对于疲劳的产生,本质上是同一种工程问题均是材料在交通荷载的反复作用下性能逐渐下降,*终发生破坏的过程。相较来说,柔性路面用沥青混合料这种抗疲劳更好的材料,在相同的疲劳寿命下可以降低路面的厚度;半刚性基层路面用水泥稳定碎石这种抗疲劳性能较差的材料,则需要更厚的结构层使层底拉应力下降到适当的水平,在石料价格低廉但沥青成本昂贵的发展初期具有显著的价格优势,目前这种价格优势已经逐渐不明显。 与裂缝问题不同,车辙的形成更多是由面层沥青混合料本身所决定的,而受到结构的影响相对较小。车辙产生的区域一般位于路面的中上面层,非重载超载路段产生车辙的位置*深也一般不超过15cm。而对于主要产生车辙的中上面层,其受力状态更多地直接受到交通荷载与环境的影响,受到结构的形式与特征的影响相对较小。因此,研究浙青路面的车辙问题,除了沥青混合料本身的抗车辙能力外,应当更多地注重轮胎荷载对于路面的非均匀分布,以及温度在深度方向的非均匀分布。 因此,从力学的角度去研究沥青路面的疲劳问题与裂缝问题,本质上是通过研究材料的疲劳行为以及永久变形行为,并将其代入路面结构进行受力分析,获得材料在结构中的疲劳与车辙发展。可以将其拆解为路面材料的本构模型研究、路面的结构分析研究两个步骤。其中,路面材料的本构模型主要通过力学理论推导、试验现象总结归纳、多尺度材料性能的预估等一系列方法去获取。而路面的力学结构分析,由于考虑了材料复杂的非线性本构,尤其是叠加上部分可能影响路面性能的非均布的交通荷载、随时间变化的温度分布等因素,几乎不可能获得解析解,而有限元方法则提供了一种获得这种复杂工程问题近似解的思路。 1.2用有限元解决道路工程典型问题的基本方法 有限元方法自20世纪50年代被提出以来,就一直是获取工程问题近似解的重要手段,并且随着计算机技术的发展,有限元的优势也愈发明显。 有限元方法通过将待求域离散化,通过变分方法,使得误差函数达到*小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元方法将许多小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将待求域看成是由许多被称为有限元的小的互连子域组成,对每一单元假定一个合适的近似解,然后推导求解这个域整体的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是精确解,而是近似解,因为初始的、复杂的实际问题在离散化的过程中被较简单的问题所代替。 市场上已经存在众多的有限元软件,因此使用有限元方法求解工程问题并不需要编写所有的以变分法为基础的全部求解方程,更多是在软件已经打包好的操作界面进行建模并设置合理的条件。用户只要构建合适的结构模型,设置合适的材料模型、荷载条件、边界条件、网格划分、求解器等,就可以完成复杂的工程问题计算。 相对于其他工程问题,道路的结构相对简单,忽略路面内部的管网结构以及横纵坡等,可以将路面结构简化为数层同种材料组成的弹性层状体系,因此道路结构的建模相对于其他领域,是较为简单的步骤。对于求解器,则根据所求的问题是动力学的瞬时问题还是准静态的受力分析而选择合适的求解器即可。道路工程的有限元核心在于解决材料模型以及边界条件的构建。 通用的有限元软件尽管提供了大量的材料本构模型,但考虑到疲劳与车辙往往涉及复杂的损伤力学与黏塑性力学模型,软件本身所带的模型很难完全适用于道路工程特殊的浙青混合料与其他道路材料,研究者往往需要根据软件提供的接口自行编辑相关的本构模型。而在本构模型之外,则需要解决道路工程的荷载与边界条件问题。道路工程除了横断面与路基底部边界条件外,主要是路面受到的交通荷载以及环境荷载。解决沥青层底部或半刚性层底部的疲劳问题时,荷载与环境的建模的精确性要求相对较弱,只需要满足交通荷载和温度对于层底的影响与实际一致即可;但对于车辙问题,由于其受到荷载与环境的影响较大,因此在求解车辙问题时,应当格外注重荷载与环境问题的精确性。 1.3本书内容安排 本书将围绕有限元仿真方法在道路工程,特别是沥青路面研究中的应用展开。在介绍有限元方法基础理论以及相关有限元计算软件的基础上,从细观和宏观两个方面,分章节介绍通过有限元来分析沥青路面车辙、疲劳以及裂缝等病害的力学行为与力学机理的过程。本书写作采用案例形式的章节设置,每章不仅包含对于具体道路工程问题的有限元分析方法,也包括了相应的力学理论知识以及可能涉及的试验方法,旨在使读者能够在一章内容中对于所感兴趣的工程问题有全面系统的了解,提高可读性和便捷性。 本书主要内容包括以下四部分: **部分为有限元基础理论,包含第2~3章。第2章介绍有限元原理,包括有限元方法近似原理、一维和三维有限元基本的计算框架,以及对道路领域常用的有限元软件ABAQUS进行简单介绍;第3章介绍了沥青混合料本构模型的有限元实现方法,主要包括使用的软件接口、黏弹-黏塑性本构模型数值实现方法、黏弹-损伤本构模型数值实现方法。 第二部分为用有限元方法解决疲劳问题的案例,包含第4~5章。两章分别从细观的沥青混合料层面研究材料疲劳的分析方法以及从宏观道路结构层面研究沥青路面结构疲劳的分析方法。 第三部分为用有限元方法解决断裂问题的案例,包含第6~7章。两章分别为从细观的沥青混合料层面研究材料断裂的分析方法以及从宏观道路结构层面研究沥青路面结构开裂的分析方法。 第四部分为沥青路面的车辙分析方法,为第8章。介绍了沥青路面与轮胎相互作用的分析过程以及沥青路面的永久变形分析方法。 第2章有限元方法简介 严格依据力学的物理方程、平衡方程、边界条件,去寻找工程问题的解析解是非常复杂的。道路工程领域涉及的沥青混合料、水泥稳定碎石、路基、级配碎石等材料都是典型的非线性材料,使得道路工程领域的问题极难获得甚至无法获得解析解。但是有限元方法提供了另一条思路,有限元方法将整体划分为有限个单元,各个单元之间通过它们的节点相互连接,并使得位移在各个单元之间保证协调。通过这种方式获得的各个单元的解析解,是解决整体工程问题的一种近似方法。 本章将介绍利用一维以及三维的有限元进行结构分析的方法,其他的例如梁单元、板单元、平面应力或应变单元等,与一维和三维有限元基本相似的方程,在本书中就不再赘述。感兴趣的读者可以寻找专门论述有限元方法的书籍进行了解本章内容对于加深读者对有限元基本原理的认知具有重要意义,读者依据该原理,可以分析在使用有限元软件中的误差或明显错误发生的原因,进而改进建模方法或求解手段。 2.1有限单元法的近似 利用解析方法去解决工程问题,所得到的解析解往往是复杂的,甚至微分方程的解析解是无穷级数的形式,使得对于复杂工程的应用很难具有通用性。而在有限元中,用一种近似解去取代完全精确的解析解,这种近似解被表示为一系列被称为试函数(trial function)的和: (2.1) 式中,为试算函数;Ci为依据解析解与近似解之间*小误差确定的系数。由于解析解是试函数的线性叠加,因此,数值解的精度完全依赖于试函数。 试函数与系数的选择必须使得数值解满足基本的边界条件。但如果直接用整体去计算近似解,则获得满足边界条件的试函数将和解析解一样困难。有限元的一个重要思想是在整个域内将待解析的整体划分为一组简单的子域,然后在子域上利用式(2.1)寻找满足边界条件的试函数。这样,除了边界上的节点需要进行特殊的处理去满足条件外,其他的单元只需要通过节点,满足节点位移之间的相互协调变形即可。 如图2.1所示,如果我们假设所需解决的问题的域是一维的,精确解由虚线给出,当整个域被划分为有限个单元时,则可以通过分段连续的多项式去计算近似解。假设近似解在每个单元内部是线性的,由于共用的节点,则分段的解在节点上是相等的。需要使用足够密的单元,数值解*终会收敛于解析解。此外,如果在单元内部使用高阶的,而不是线性的多项式,则可以得到更精确的近似解。 对于不同的工程问题,可以依据问题的性质与维度采用不同的单元类型。表2.1为工程中常用的单元类型。 在将待求解的域离散化后,对于求解问题的积分式,将可以通过作用于每个单元上的和的形式,分解到每一个单元上。例如,若需要求解在(0,1)上的数学问题,对于(0,1)上的积分式,可以分解为10个单元的形式进行离散化: (2.2) 式中,f为待求问题所需要计算的积分。 在将待求域分解为一系列的简单形状的单元后,下一步是单元内部的求解。单元内部的解需要进一步近似为多项式的形式。继续以一维问题为例,将一维问题简化为一系列单元后,取其中的一个单元,如图2.2所示。则取出的单元具有两个节点,试函数可以利用节点的值进行构造。
沥青路面有限元仿真原理与方法 作者简介
马涛,教授,博士生导师,东南大学青年首席教授,国家优秀青年科学基金获得者。入选交通运输部中青年科技创新领军人才,江苏省“333高层次人才培养工程”中青年科学技术带头人、“六大人才高峰”计划;获评中国公路青年科技奖、中国公路建设行业协会科学技术英才奖、江苏公路优秀科技工作者、唐仲英青年学者、王秉纲青年学者、东南大学青年五四奖章。长期致力于道路工程领域的科学研究和人才培养工作。主持/参与国家重点研发计划、国家863计划、国家科技支撑计划、国家自然科学基金等重要科研课题50余项;获得省部级科技进步奖、技术发明奖以及学会/协会科学技术奖等各类奖项20余项;获得全国微课教学比赛一等奖、省部级教学成“果奖以及东南大学“我最喜爱的研究生导师”十佳导师等教学荣誉奖励10余项;指导学生获得全国“互联网+”大赛银奖、全国交通运输科技大赛一等奖、江苏省研究生科研创新实践大赛一等奖等各类学科竞赛奖10余项。
- >
伊索寓言-世界文学名著典藏-全译本
伊索寓言-世界文学名著典藏-全译本
¥9.3¥19.0 - >
【精装绘本】画给孩子的中国神话
【精装绘本】画给孩子的中国神话
¥17.6¥55.0 - >
姑妈的宝刀
姑妈的宝刀
¥9.9¥30.0 - >
我从未如此眷恋人间
我从未如此眷恋人间
¥17.5¥49.8 - >
罗庸西南联大授课录
罗庸西南联大授课录
¥16.6¥32.0 - >
月亮虎
月亮虎
¥14.4¥48.0 - >
龙榆生:词曲概论/大家小书
龙榆生:词曲概论/大家小书
¥9.2¥24.0 - >
二体千字文
二体千字文
¥14.0¥40.0
-
中国传统民俗文化:建筑系列:中国古代桥梁
¥19.6¥58 -
渡河工程
¥20.2¥60 -
图说摩托车维修
¥60¥82 -
北京高速公路建设实录
¥122.4¥360 -
路文化
¥22.1¥66 -
河北高速公路建设实录
¥163.2¥480