扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
强化学习入门——基于Python(基于Python的数据分析丛书) 版权信息
- ISBN:9787300313818
- 条形码:9787300313818 ; 978-7-300-31381-8
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
强化学习入门——基于Python(基于Python的数据分析丛书) 内容简介
强化学习是机器学习的重要组成部分。本书采用理论与实践相结合的写法,从强化学习的基本概念开始,详细介绍了强化学习的算法理论和实践操作,配有Python代码实现,完整呈现强化学习算法的实践细节。通过这本书你将会:
(1)理解强化学习*关键方面的问题。
(2)探索马尔可夫决策过程及动态规划的过程。
(3)深入理解强化学习的各种方法,包括MC方法,TD方法,深度学习Q方法,SARSA方法等。
(4)通过大量的现实例子及Python实现程序,不断地实践,成为强化学习的高手。
强化学习入门——基于Python(基于Python的数据分析丛书) 目录
**部分 强化学习基础与实践
第1章引 言
1.1 从迷宫问题谈起
1.1.1 人类和动物所面对的迷宫问题
1.1.2 迷宫的说明性例子
1.1.3 例1.1: 奖励矩阵
1.1.4 例1.1: 训练以得到关于状态和行动的奖励: Q矩阵
1.1.5 例1.1: 使用Q矩阵来得到*优行动(路径)
1.1.6 例1.1: 把代码组合成 class
1.2 热身: 井字游戏*
1.2.1 两个真人的简单井字游戏
1.2.2 人和机器的井字游戏的强化学习实践
1.2.3 井字游戏的强化学习代码解释
1.2.4 整个训练过程
1.2.5 使用训练后的模型做人机游戏
1.2.6 1.2.1节代码
1.2.7 附录: 1.2.3节人和机器的井字游戏代码
1.3 强化学习的基本概念
1.4 马尔可夫决策过程的要素
1.5 作为目标的奖励
1.6 探索与开发的权衡
1.6.1 探索与开发
1.6.2 强化学习中的优化和其他学科的区别
1.7 本书将会讨论和运算的一些例子
1.7.1 例1.3格子路径问题
1.7.2 例1.4出租车问题
1.7.3 例1.5推车杆问题
1.7.4 例1.6倒立摆问题
1.7.5 例1.7多臂老虎机问题
1.7.6 例1.7和其他例子(例1.3、例1.5及例1.6)的区别
第2章马尔可夫决策过程和动态规划
2.1 马尔可夫决策过程简介
2.1.1 马尔可夫性
2.1.2 策略
2.1.3 作为回报期望的价值函数
2.1.4 通过例 1.3 格子路径问题理解本节概念
2.2 动态规划
2.2.1 动态规划简介
2.2.2 Bellman方程
2.2.3 *优策略和*优价值函数
2.3 强化学习基本方法概述
2.3.1 代理与环境的互动
2.3.2 策略迭代: 策略评估和策略改进
2.3.3 价值迭代
2.3.4 策略迭代与价值迭代比较
2.3.5 异步动态规划
2.3.6 广义策略迭代
2.3.7 策略梯度
2.3.8 off-policy, on-policy和offline RL
2.4 蒙特卡罗抽样
2.4.1 MC策略评估
2.4.2 MC状态-行动值的估计
2.4.3 on-policy: Q价值的MC估计
2.4.4 off-policy: MC预测
2.4.5 MC的策略梯度
2.5 和本章概念相关的例子
2.5.1 例1.3格子路径问题使用Bellman方程做价值迭代
2.5.2 例1.3格子路径问题的TD函数
第3章各种机器学习算法及实例
3.1 暂时差(TD)简介
3.1.1 TD、DP和MC算法的比较
3.1.2 TD方法的特点
3.1.3 TD(0)方法的延伸
3.2 TD评估及策略改进
3.2.1 SARSA (on-policy)
3.2.2 Q学习 (off-policy)
3.2.3 加倍Q学习 (off-policy)
3.3 函数逼近及深度学习算法
3.3.1 基于价值和策略的函数逼近
3.3.2 深度Q学习
3.3.3 TD: 演员-批评者(AC)架构
3.3.4 A2C算法步骤
3.3.5 A3C 算法
3.3.6 DDPG 算法
3.3.7 ES 算法
3.3.8 PPO 算法
3.3.9 SAC 算法
3.4 用第1章的例子理解本章算法
3.4.1 例1.3格子路径问题: SARSA
3.4.2 例1.4出租车问题: SARSA
3.4.3 例1.3格子路径问题: 加倍Q学
3.4.4 例1.5推车杆问题: 深度Q学习
3.4.5 例1.5推车杆问题: A3C
3.4.6 例1.6倒立摆问题: DDPG
3.4.7 例1.5推车杆问题: ES
3.4.8 例1.5推车杆问题: PPO-Clip
3.4.9 例1.6 倒立摆问题: SAC
第二部分: 软件及一些数学知识
第4章 Python基础
4.1 引言
4.2 安装
4.2.1 安装及开始体验
4.2.2 运行Notebook
4.3 基本模块的编程
4.4 Numpy模块
4.5 Pandas模块
4.6 Matplotlib模块
4.7 Python 的类――面向对象编程简介
4.7.1 类的基本结构
4.7.2 计算*小二乘回归的例子
4.7.3 子类
第5章 PyTorch与深度学习
5.1 作为机器学习一部分的深度学习
5.2 PyTorch 简介
5.3 神经网络简介
5.3.1 神经网络概述
5.3.2 梯度下降法
5.3.3 深度神经网络的PyTorch表示
5.4 深度学习的步骤
5.4.1 定义神经网络
5.4.2 转换数据成训练需要的格式
5.4.3 训练并评估结果
第6章 回顾一些数学知识*
6.1 条件概率和条件期望
6.2 范数和收缩
6.3 线性代数
6.3.1 特征值和特征向量
6.3.2 随机矩阵
6.4 马尔可夫决策过程
6.4.1 马尔可夫链和马尔可夫决策过程
6.4.2 策略
6.4.3 关于时间视界的优化
6.5 Bellman 方程
6.5.1 有折扣无限视界问题的Bellman问题
6.5.2 无折扣无限视界问题的Bellman问题
6.6 动态规划
6.6.1 价值迭代
6.6.2 策略迭代
第1章引 言
1.1 从迷宫问题谈起
1.1.1 人类和动物所面对的迷宫问题
1.1.2 迷宫的说明性例子
1.1.3 例1.1: 奖励矩阵
1.1.4 例1.1: 训练以得到关于状态和行动的奖励: Q矩阵
1.1.5 例1.1: 使用Q矩阵来得到*优行动(路径)
1.1.6 例1.1: 把代码组合成 class
1.2 热身: 井字游戏*
1.2.1 两个真人的简单井字游戏
1.2.2 人和机器的井字游戏的强化学习实践
1.2.3 井字游戏的强化学习代码解释
1.2.4 整个训练过程
1.2.5 使用训练后的模型做人机游戏
1.2.6 1.2.1节代码
1.2.7 附录: 1.2.3节人和机器的井字游戏代码
1.3 强化学习的基本概念
1.4 马尔可夫决策过程的要素
1.5 作为目标的奖励
1.6 探索与开发的权衡
1.6.1 探索与开发
1.6.2 强化学习中的优化和其他学科的区别
1.7 本书将会讨论和运算的一些例子
1.7.1 例1.3格子路径问题
1.7.2 例1.4出租车问题
1.7.3 例1.5推车杆问题
1.7.4 例1.6倒立摆问题
1.7.5 例1.7多臂老虎机问题
1.7.6 例1.7和其他例子(例1.3、例1.5及例1.6)的区别
第2章马尔可夫决策过程和动态规划
2.1 马尔可夫决策过程简介
2.1.1 马尔可夫性
2.1.2 策略
2.1.3 作为回报期望的价值函数
2.1.4 通过例 1.3 格子路径问题理解本节概念
2.2 动态规划
2.2.1 动态规划简介
2.2.2 Bellman方程
2.2.3 *优策略和*优价值函数
2.3 强化学习基本方法概述
2.3.1 代理与环境的互动
2.3.2 策略迭代: 策略评估和策略改进
2.3.3 价值迭代
2.3.4 策略迭代与价值迭代比较
2.3.5 异步动态规划
2.3.6 广义策略迭代
2.3.7 策略梯度
2.3.8 off-policy, on-policy和offline RL
2.4 蒙特卡罗抽样
2.4.1 MC策略评估
2.4.2 MC状态-行动值的估计
2.4.3 on-policy: Q价值的MC估计
2.4.4 off-policy: MC预测
2.4.5 MC的策略梯度
2.5 和本章概念相关的例子
2.5.1 例1.3格子路径问题使用Bellman方程做价值迭代
2.5.2 例1.3格子路径问题的TD函数
第3章各种机器学习算法及实例
3.1 暂时差(TD)简介
3.1.1 TD、DP和MC算法的比较
3.1.2 TD方法的特点
3.1.3 TD(0)方法的延伸
3.2 TD评估及策略改进
3.2.1 SARSA (on-policy)
3.2.2 Q学习 (off-policy)
3.2.3 加倍Q学习 (off-policy)
3.3 函数逼近及深度学习算法
3.3.1 基于价值和策略的函数逼近
3.3.2 深度Q学习
3.3.3 TD: 演员-批评者(AC)架构
3.3.4 A2C算法步骤
3.3.5 A3C 算法
3.3.6 DDPG 算法
3.3.7 ES 算法
3.3.8 PPO 算法
3.3.9 SAC 算法
3.4 用第1章的例子理解本章算法
3.4.1 例1.3格子路径问题: SARSA
3.4.2 例1.4出租车问题: SARSA
3.4.3 例1.3格子路径问题: 加倍Q学
3.4.4 例1.5推车杆问题: 深度Q学习
3.4.5 例1.5推车杆问题: A3C
3.4.6 例1.6倒立摆问题: DDPG
3.4.7 例1.5推车杆问题: ES
3.4.8 例1.5推车杆问题: PPO-Clip
3.4.9 例1.6 倒立摆问题: SAC
第二部分: 软件及一些数学知识
第4章 Python基础
4.1 引言
4.2 安装
4.2.1 安装及开始体验
4.2.2 运行Notebook
4.3 基本模块的编程
4.4 Numpy模块
4.5 Pandas模块
4.6 Matplotlib模块
4.7 Python 的类――面向对象编程简介
4.7.1 类的基本结构
4.7.2 计算*小二乘回归的例子
4.7.3 子类
第5章 PyTorch与深度学习
5.1 作为机器学习一部分的深度学习
5.2 PyTorch 简介
5.3 神经网络简介
5.3.1 神经网络概述
5.3.2 梯度下降法
5.3.3 深度神经网络的PyTorch表示
5.4 深度学习的步骤
5.4.1 定义神经网络
5.4.2 转换数据成训练需要的格式
5.4.3 训练并评估结果
第6章 回顾一些数学知识*
6.1 条件概率和条件期望
6.2 范数和收缩
6.3 线性代数
6.3.1 特征值和特征向量
6.3.2 随机矩阵
6.4 马尔可夫决策过程
6.4.1 马尔可夫链和马尔可夫决策过程
6.4.2 策略
6.4.3 关于时间视界的优化
6.5 Bellman 方程
6.5.1 有折扣无限视界问题的Bellman问题
6.5.2 无折扣无限视界问题的Bellman问题
6.6 动态规划
6.6.1 价值迭代
6.6.2 策略迭代
展开全部
书友推荐
- >
苦雨斋序跋文-周作人自编集
苦雨斋序跋文-周作人自编集
¥6.9¥16.0 - >
山海经
山海经
¥20.4¥68.0 - >
月亮虎
月亮虎
¥20.2¥48.0 - >
经典常谈
经典常谈
¥16.3¥39.8 - >
中国人在乌苏里边疆区:历史与人类学概述
中国人在乌苏里边疆区:历史与人类学概述
¥20.6¥48.0 - >
人文阅读与收藏·良友文学丛书:一天的工作
人文阅读与收藏·良友文学丛书:一天的工作
¥14.7¥45.8 - >
龙榆生:词曲概论/大家小书
龙榆生:词曲概论/大家小书
¥7.7¥24.0 - >
伊索寓言-世界文学名著典藏-全译本
伊索寓言-世界文学名著典藏-全译本
¥9.3¥19.0
本类畅销
-
详解Spring Boot(从入门到企业级开发实战)/孙鑫精品图书系列
¥64.2¥129 -
PYTHON应用与实战
¥52.9¥79.8 -
Python编程与数值方法
¥79.6¥109 -
Go语言从入门到项目实战(视频版)
¥60.4¥108 -
软件设计师
¥14.2¥38 -
GO语言编程从入门到实践
¥75.6¥108