超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
欢迎光临中图网 请 | 注册
> >>
半导体器件原理与技术

半导体器件原理与技术

出版社:西安电子科技大学出版社出版时间:2023-01-01
开本: 26cm 页数: 498页
本类榜单:工业技术销量榜
中 图 价:¥60.0(7.6折) 定价  ¥79.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>
微信公众号

半导体器件原理与技术 版权信息

半导体器件原理与技术 内容简介

This book comprehensively and deeply introduces the semiconductor device principle and technology. The book consists of three sections: semiconductor physics and devices, semiconductor manufacturing process and semiconductor packaging,testing and simulating. The first section mainly introduces semiconductor physics foundation, diode, bipolar junction transistor, MOS field effect transistor, power MOSFET, thyristor, IGBT, passive device and SPICE model. The second section mainly introduces semiconductor process technology, semiconductor process simulation and film preparation technology. The third section mainly introduces semiconductor packaging, testing and simulating technology. These contents will lay a solid foundation for further mastering the basic theories and methods of analysis, design, manufacturing, packaging and testing of semiconductor devices. This book can be used as a textbook for undergraduate and graduate students who are engaged in the analysis, design, manufacturing, packaging and testing of semiconductor devices and IC design. It can also be used as a selfstudy and reference book for professional engineers.

半导体器件原理与技术 目录

SECTION Ⅰ Semiconductor Physics and Devices Chapter 1 Semiconductor physics foundation 3 1.1 Semiconductor materials 3 1.2 Semiconductor structure 6 1.3 Semiconductor defects 10 1.4 Energy band of semiconductor 14 1.5 Fermi level 18 1.6 Carrier concentration of semiconductor 20 1.7 Carrier motion of semiconductor 25 1.7.1 Carrier drift 25 1.7.2 Carrier diffusion 26 1.7.3 Carrier recombination 28 Exercises 30 References 31 Chapter 2 Diode 33 2.1 Basic structure of diode 33 2.2 Formation of pn junction and impurity distribution 35 2.3 Equilibrium pn junction 36 2.3.1 Formation of space charge region 36 2.3.2 Energy band of pn junction 38 2.3.3 Contact potential difference 39 2.3.4 Space charge region characteristics 40 2.3.5 Electric field and width of space charge region 41 2.4 Bias characteristics of diodes 44 2.4.1 Forward bias 44 2.4.2 Reverse bias 46 2.5 Influencing factors of diode DC characteristics 48 2.5.1 Recombination current and generation current in space charge region 49 2.5.2 Surface effect 49 2.5.3 Series resistance effect 49 2.5.4 Large injection effect 50 2.5.5 Temperature effect 50 2.6 Breakdown characteristics of diode 50 2.6.1 Avalanche breakdown 51 2.6.2 Tunnel breakdown 51 2.6.3 Thermoelectric breakdown 52 2.7 Switching characteristics of diode 52 Exercises 54 References 57 Chapter 3 Bipolar junction transistor 59 3.1 Introduction of BJT 59 3.2 Basic architecture of bipolar transistor 60 3.2.1 Alloy transistor 61 3.2.2 Alloy diffusion transistor 62 3.2.3 Planar transistor 63 3.2.4 Mesa transistor 63 3.3 Amplification of bipolar junction transistor 64 3.3.1 Carrier transmisson characteristics 65 3.3.2 Current amplification coefficient 68 3.3.3 Amplification conditions 70 3.4 Characteristic curve of bipolar transistor 71 3.4.1 Common base characteristic curve 71 3.4.2 Common emitter characteristic curve 73 3.5 Reverse current and breakdown voltage characteristics 76 3.5.1 Reverse current 76 3.5.2 Breakdown voltage 78 3.6 Base resistance 81 3.6.1 Concept of base resistance 81 3.6.2 Base resistance of comb transistor 82 3.6.3 Base resistance of circular transistor 83 3.7 Switching characteristics of bipolar junction transistor 84 3.7.1 On state and off state 84 3.7.2 Transient switching characteristics 85 Exercises 87 References 89 Chapter 4 MOS field effect transistor 91 4.1 Basic structure, principle and classification of MOSFET 91 4.1.1 Basic structure of MOSFET 92 4.1.2 Operating principle of MOSFET 92 4.1.3 Classification of MOSFET 93 4.2 Threshold voltage of MOSFET 96 4.2.1 Charge distribution in MOS structure 96 4.2.2 Threshold voltage of ideal MOSFET 98 4.2.3 Threshold voltage of actual MOSFET 98 4.3 DC characteristics of MOSFET 99 4.3.1 Operating characteristics of MOSFET 100 4.3.2 Breakdown characteristics of MOSFET 104 4.4 Small signal parameters and frequency characteristics of MOSFET 108 4.4.1 Small signal parameters of MOSFET 109 4.4.2 Frequency characteristics of MOSFET 112 4.5 Secondorder effects of MOSFET 115 4.5.1 Nonconstant mobility effect 115 4.5.2 Bulk charge effect 116 4.5.3 Short channel effect 119 4.5.4 Narrow channel effect 121 4.6 Switching characteristics of MOSFET 122 4.6.1 Transient switching delay 123 4.6.2 Calculation of switching time 124 Exercises 126 References 128 Chapter 5 Power MOSFET 130 5.1 Introduction 130 5.2 Structure of power MOSFET devices 131 5.3 Channel characteristics 133 5.4 Conduction loss 135 5.5 Switching characteristics 137 5.6 Selection of power MOSFET devices 141 Exercises 143 References 145 Chapter 6 Thyristor 147 6.1 Introduction 147 6.2 Device structure and working principle 148 6.3 IV characteristics of thyristor 151 6.3.1 Static characteristics 151 6.3.2 Dynamic characteristics 152 6.4 Conduction characteristics 153 6.5 Shutdown characteristics 156 6.5.1 Interrupt anode current 157 6.5.2 Reverse voltage interruption 158 Exercises 160 References 162 Chapter 7 IGBT 163 7.1 Introduction 163 7.2 Device structure and working mechanism of IGBT 165 7.3 IV characteristics of IGBT 167 7.4 Switching characteristics of IGBT 168 7.4.1 Conduction characteristics 168 7.4.2 Shutdown characteristics 170 Exercises 172 References 173 Chapter 8 Passive devices 174 8.1 Introduction 174 8.2 Embedded passive devices 176 8.3 Integrated passive devices 176 8.4 Integrated resistance 178 8.4.1 Bipolar transistor processing resistance 178 8.4.2 CMOS processing resistance 182 8.4.3 Resistance value calculation and common graphics 183 8.4.4 Resistance parasitic effect 185 8.5 Integrated capacitance 188 8.5.1 Type of integrated capacitance 188 8.5.2 Capacitance parasitic effect 192 8.6 Integrated inductance 195 8.6.1 Integrated inductance structure 195 8.6.2 Inductive parasitic effect 196 Exercises 198 References 201 Chapter 9 SPICE device model 202 9.1 Introduction 202 9.2 Diode SPICE model 205 9.2.1 DC model of diode 205 9.2.2 Transient model of diode 206 9.2.3 AC model of diode 206 9.2.4 Noise model of diode 207 9.2.5 Temperature effect of diode 207 9.3 SPICE model of bipolar transistor 209 9.3.1 Small signal model of bipolar transistor 209 9.3.2 Transient analysis 209 9.3.3 Noise analysis 212 9.3.4 Temperature effect 214 9.4 SPICE model of MOS field effect transistor 216 9.4.1 Small signal model of MOSFET 216 9.4.2 Noise model of MOSFET 218 9.4.3 Transient model of MOSFET 218 9.4.4 Temperature effect of MOSFET 220 9.4.5 Second order effect and higher order effect models 221 9.5 SPICE model of passive devices 224 9.5.1 Resistance 224 9.5.2 Capacitance 225 9.5.3 Inductance 226 Exercises 226 References 228 SECTION Ⅱ Semiconductor Manufacturing Process Chapter 10 Semiconductor process technology 231 10.1 Substrate cleaning 232 10.1.1 Wet chemical cleaning 233 10.1.2 Dry cleaning 234 10.1.3 Beam cleaning 235 10.2 Oxidation technology 235 10.2.1 Structure and properties of SiO2 film 235 10.2.2 Thermal oxidation 239 10.2.3 Quality analysis of oxide layer 243 10.2.4 Other oxidation methods 246 10.3 Graphic processing technology 247 10.3.1 Photo etching process flow 248 10.3.2 Photoresist classification 249 10.3.3 Mask preparation 250 10.3.4 Photolithography technology 252 10.3.5 Etching technology 255 10.3.6 Defect analysis 258 10.4 Doping technology 261 10.4.1 Basic concept of doping 261 10.4.2 Thermal diffusion 261 10.4.3 Ion implantation 267 10.4.4 Other doping methods 272 Exercises 272 References 275 Chapter 11 Semiconductor process simulation 276 11.1 Introduction 276 11.1.1 Program startup 277 11.1.2 Example loading 277 11.2 nchannel MOSFET simulation 278 11.2.1 Simulation grid construction 279 11.2.2 Substrate initialization 281 11.2.3 ATHENA operation and drawing 282 11.2.4 Gate oxidation process 283 11.2.5 Ion implantation 288 11.2.6 Polysilicon gate deposition 291 11.2.7 Polysilicon etching 292 11.2.8 Polysilicon oxidation 294 11.2.9 Polysilicon doping 295 11.2.10 Isolated oxide deposition 297 11.2.11 Isolation oxide etching 297 11.2.12 Source/Drain injection and annealing 298 11.2.13 Metal deposition 299 11.2.14 Extraction of device parameters 302 11.2.15 Half nchannel MOS structure image 303 11.2.16 Electrode marking 304 11.2.17 Save ATHENA structure file 305 11.3 Lithography process simulation 306 11.3.1 Mask design 306 11.3.2 Light source selection 308 11.3.3 Parameter configuration of projection system 308 11.3.4 Filter parameter configuration 309 11.3.5 Imaging 309 11.3.6 Exposure 310 11.3.7 Baking 311 11.3.8 Development 311 11.3.9 Complete lithography process 312 Exercises 314 References 315 Chapter 12 Film preparation technology 316 12.1 Physical preparation technology 317 12.1.1 Vacuum foundation 317 12.1.2 Vacuum evaporation coating 326 12.1.3 Sputtering coating 329 12.1.4 Molecular beam epitaxy 334 12.1.5 Pulsed laser deposition 338 12.2 Chemical preparation technology 342 12.2.1 Chemical vapor deposition 343 12.2.2 Chemical solution preparation 352 12.2.3 Soft solution processing 358 Exercises 360 References 363 SECTION Ⅲ Semiconductor Packaging, Testing and Simulating Chapter 13 Semiconductor packaging technology 367 13.1 Introduction 367 13.2 Packaging function 369 13.2.1 Physical protection 369 13.2.2 Electrical connection 369 13.2.3 Heat dissipation 370 13.3 Packaging process 371 13.3.1 Overview of process flow 371 13.3.2 Chip mounting 372 13.3.3 Chip interconnection 374 13.3.4 Molding technology 378 13.4 Packaging materials 379 13.4.1 Molding materials 379 13.4.2 Frame materials 381 13.5 Packaging type 383 13.5.1 Pin 383 13.5.2 Surface Mount 385 13.5.3 Array 388 13.6 Other packaging technologies 390 13.6.1 Multichip packaging 390 13.6.2 Chip level packaging 392 13.6.3 Preencapsulated interconnection system 393 13.6.4 Flip chip packaging 394 Exercises 396 References 398 Chapter 14 Semiconductor parameter testing technology 400 14.1 Semiconductor resistivity testing 400 14.1.1 Introduction 400 14.1.2 Fourpoint probe testing method 402 14.1.3 Influencing factors 407 14.2 Conductivity type testing of semiconductor 408 14.2.1 Hot and cold probe method 408 14.2.2 Single probe point contact rectification method 409 14.2.3 Influencing factors 412 14.3 Oxide film thickness testing 413 14.3.1 Color contrast method 413 14.3.2 Optical interferometry 414 14.3.3 High frequency turbulence method 415 14.3.4 Ellipsometry 416 14.4 Junction depth testing 417 14.5 Testing of impurity concentration of epitaxial layer 418 14.6 Testing of nonequilibrium minority carrier lifetime 421 14.6.1 Overview 421 14.6.2 Lifetime of nonequilibrium minority carriers 422 14.6.3 Testing method 422 14.7 Bipolar transistor parameter testing 424 14.7.1 DC parameter testing 424 14.7.2 Testing of Ccr′bb product 426 14.7.3 Testing of switching parameters 427 14.7.4 Characteristic frequency testing 429 14.7.5 Steadystate thermal resistance testing 433 14.8 MOSFET parameter testing 435 14.8.1 DC characteristic testing 435 14.8.2 Testing of input capacitance and feedback capacitance 437 14.8.3 Testing of power gain and noise coefficient 438 Exercises 440 References 443 Chapter 15 Realization technology of semiconductor device characteristic simulation based on GUI 445 15.1 Introduction 445 15.2 Software architecture design 446 15.3 Project creation 448 15.4 Main page design 453 15.5 Semiconductor physical parameters 457 15.5.1 Fermi potential calculation 457 15.5.2 Carrier concentration calculation 460 15.5.3 Energy level calculation of single hydrogen atom 462 15.6 Semiconductor device parameters 463 15.6.1 CMOS device characteristics 463 15.6.2 Resistivity calculation 468 15.6.3 Junction depth calculation 470 15.6.4 Calculation of oxide film thickness 472 15.6.5 Contact potential difference calculation 473 15.7 Multimedia resources 475 15.8 Accessibility functions 479 15.9 Help file design 481 Exercises 483 References 484 Appendix 485 Keys to exercises 495
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服