-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
Python算法交易 版权信息
- ISBN:9787519869694
- 条形码:9787519869694 ; 978-7-5198-6969-4
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
Python算法交易 本书特色
虽然算法交易曾经是机构参与者的专属领域,但是现在已经开放给了使用在线平台的小型组织和个人交易者。今天Python及其强大的软件包生态系统是许多交易者首S选的工具。在这本非常实用的书中,本书作者向学生、学者及从业者展示了如何在有趣的算法交易领域使用Python。 你将学习几种在不同方面应用Python进行算法交易的方法,例如如何回测交易策略,以及如何与在线交易平台交互。一些非常大的买方和卖方机构都大量使用Python。通过探索系统地构建和部署自动算法交易策略,本书将帮助你实现公平竞争。
Python算法交易 内容简介
本书的主要内容有:为算法交易配置合适的Python环境。了解如何从公共和专有数据源检索金融数据。使用NumPy和pandas探索金融分析的矢量化。掌握不同算法交易策略的矢量化回测。使用机器学习和深度学习生成市场预测。使用套接字编程工具对流数据进行实时处理。使用OANDA和FXCM交易平台实施自动算法交易策略。
Python算法交易 目录
前言
第1章 Python和算法交易
1.1 Python的金融之道
1.1.1 Python与伪代码
1.1.2 NumPy和向量化
1.1.3 pandas和DataFrame类
1.2 算法交易
1.3 Python的算法交易之道
1.4 本书的重点和先决条件
1.5 交易策略
1.5.1 简单移动平均线
1.5.2 动量策略
1.5.3 均值回归
1.5.4 机器学习和深度学习
1.6 小结
1.7 参考资料和延伸资源
第2章 Python基础架构
2.1 Conda作为软件包管理器
2.1.1 安装Miniconda
2.1.2 Conda的基本操作
2.2 Conda作为虚拟环境管理器
2.3 使用Docker容器
2.3.1 Docker镜像和容器
2.3.2 构建一个带Python的Ubuntu Docker镜像
2.4 使用云实例
2.4.1 RSA公钥私钥
2.4.2 Jupyter Notebook配置文件
2.4.3 Python和Jupyter Lab的安装脚本
2.4.4 编排Droplet初始化脚本
2.5 小结
2.6 参考资料和延伸资源
第3章 处理金融数据
3.1 从不同数据源读取金融数据
3.1.1 数据集
3.1.2 用Python读取CSV文件
3.1.3 使用pandas从CSV文件读取
3.1.4 导出到Excel和JSON
3.1.5 从Excel和JSON读取数据
3.2 使用开放数据源
3.3 Eikon数据API
3.3.1 获取结构化历史数据
3.3.2 获取非结构化历史数据
3.4 高效存储金融数据
3.4.1 存储DataFrame对象
3.4.2 使用TsTables
3.4.3 用SQLite3存储数据
3.5 小结
3.6 参考资料和延伸资源
3.7 Python脚本
第4章 掌握向量化回测
4.1 利用向量化
4.1.1 使用Numpy进行向量化
4.1.2 使用pandas进行向量化
4.2 基于简单移动平均线的策略
4.2.1 入门基础
4.2.2 方法通用化
4.3 基于动量的策略
4.3.1 基础入门
4.3.2 方法通用化
4.4 基于均值回归的策略
4.4.1 基础入门
4.4.2 方法通用化
4.5 数据窥探和过度拟合
4.6 小结
4.7 参考资料和延伸资源
4.8 Python脚本
4.8.1 SMA回测类
4.8.2 动量回测类
4.8.3 均值回归回测类
第5章 通过机器学习预测市场动向
5.1 使用线性回归进行市场走势预测
5.1.1 线性回归快速回顾
5.1.2 价格预测的基本思路
5.1.3 预测指数水平
5.1.4 预测未来收益
5.1.5 预测未来市场方向
5.1.6 基于回归策略的向量化回测
5.1.7 概括方法
5.2 使用机器学习进行市场动向预测
5.2.1 scikit-learn的线性回归
5.2.2 一个简单的分类问题
5.2.3 使用逻辑回归预测市场方向
5.2.4 方法通用化
5.3 使用深度学习进行市场走势预测
5.3.1 再谈简单分类问题
5.3.2 使用深度神经网络预测市场方向
5.3.3 添加不同类型的特征
5.4 小结
5.5 参考资料和延伸资源
5.6 Python脚本
5.6.1 线性回归回测类
5.6.2 分类算法回测类
第6章 构建基于事件回测的类
6.1 回测基础类
6.2 做多回测类
6.3 多空回测类
6.4 小结
6.5 参考资料和延伸资源
6.6 Python脚本
6.6.1 回测基础类
6.6.2 做多回测类
6.6.3 多空回测类
第7章 使用实时数据和套接字
7.1 运行一个简单的实时数据服务器
7.2 连接报价数据客户端
7.3 实时生成交易信号
7.4 使用Plotly可视化流数据
7.4.1 基础部分
7.4.2 三个实时流
7.4.3 三个流的三个子图
7.4.4 流式数据与柱线图
7.5 小结
7.6 参考资料和延伸资源
7.7 Python脚本
7.7.1 样例报价数据服务器
7.7.2 报价数据客户端
7.7.3 动量在线算法
7.7.4 为柱线图提供样例数据的服务器
第8章 使用Oanda进行CFD交易
8.1 开设账户
8.2 Oanda应用程序接口
8.3 获取历史数据
8.3.1 查询可交易的金融工具
8.3.2 基于分钟柱线图回测的动量策略
8.3.3 杠杆和保证金因素
8.4 处理流式数据
8.5 下订单
8.6 实时实施交易策略
8.7 获取账号信息
8.8 小结
8.9 参考资料和延伸资源
8.10 Python脚本
第9章 使用FXCM进行外汇交易
9.1 入门
9.2 获取数据
9.2.1 获取报价数据
9.2.2 获取K线数据
9.3 使用API
9.3.1 获取历史数据
9.3.2 获取流数据
9.3.3 下单
9.3.4 账户信息
9.4 小结
9.5 参考资料和延伸资源
第10章 自动化交易操作
10.1 资本管理
10.1.1 二项式设置中的凯利准则
10.1.2 股票和指数里的凯利准则
10.2 基于机器学习的交易策略
10.2.1 向量回测
10.2.2 *优杠杆
10.2.3 风险分析
10.2.4 持久化模型对象
10.3 实时算法
10.4 基础设施和部署
10.5 日志和监控
10.6 可
Python算法交易 作者简介
Yves J. Hilpisch是The Al Machine和The Python Quants两个组织的创始人兼首席执行官,这个组织专注于在金融数据科学、人工智能,算法交易和计算金融领域使用开源技术。他还是《Artificial Intelligence in Finance》(O'Reilly),《 Python for Finance》(O'Reilly),《Derivatives Analytics with Python》(Wiley),《Listed Volatility and Variance Derivatives》(Wiley)的作者,Yves还在量化金融认证(CQF)项目进行人工智能算法交易的讲座。
- >
我与地坛
我与地坛
¥16.5¥28.0 - >
罗曼·罗兰读书随笔-精装
罗曼·罗兰读书随笔-精装
¥20.3¥58.0 - >
伊索寓言-世界文学名著典藏-全译本
伊索寓言-世界文学名著典藏-全译本
¥9.3¥19.0 - >
巴金-再思录
巴金-再思录
¥14.7¥46.0 - >
大红狗在马戏团-大红狗克里弗-助人
大红狗在马戏团-大红狗克里弗-助人
¥3.5¥10.0 - >
自卑与超越
自卑与超越
¥12.7¥39.8 - >
回忆爱玛侬
回忆爱玛侬
¥23.0¥32.8 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0
-
详解Spring Boot(从入门到企业级开发实战)/孙鑫精品图书系列
¥64.2¥129 -
PYTHON应用与实战
¥52.9¥79.8 -
Python编程与数值方法
¥79.6¥109 -
Go语言从入门到项目实战(视频版)
¥60.4¥108 -
软件设计师
¥14.2¥38 -
GO语言编程从入门到实践
¥75.6¥108