书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
航天器姿态控制 一种线性矩阵不等式方法

航天器姿态控制 一种线性矩阵不等式方法

作者:刘闯 等
出版社:科学出版社出版时间:2022-06-01
开本: 16开 页数: 384
本类榜单:工业技术销量榜
中 图 价:¥158.0(7.9折) 定价  ¥200.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

航天器姿态控制 一种线性矩阵不等式方法 版权信息

  • ISBN:9787030719782
  • 条形码:9787030719782 ; 978-7-03-071978-2
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

航天器姿态控制 一种线性矩阵不等式方法 内容简介

本书凝聚了作者在航天器姿态控制领域近十年的原创性研究成果,系统研究了多源复杂扰动下姿态稳定控制方法。全书共11章。第1章对线性矩阵不等式方法与航天器姿态动力学进行了介绍,为后续控制系统设计奠定理论基础;第2—6章介绍了刚体航天器姿态稳定控制方法,主要包括:状态反馈非脆弱控制、动态输出反馈非脆弱控制、基于中间状态观测器的容错时滞控制与容错非脆弱控制,以及基于干扰观测器的输入受限控制;第7—9章介绍了柔性航天器姿态稳定控制方法,主要包括:具有极点配置约束的改进混合H2/H∞控制、非脆弱H∞控制,以及基于主动振动抑制的抗干扰控制;第10章介绍了航天器混沌姿态同步跟踪控制方法,并在第11章给出了欠驱动混沌姿态角速度稳定控制方法供读者参考。本书可供航空航天、机械电子及控制相关专业的高等院校本科生和研究生学习参考,也是相关领域科研工作者和工程技术人员查阅或教学的有效工具。

航天器姿态控制 一种线性矩阵不等式方法 目录

Contents
Preface
1.Introduction of basic knowledge
1.1 Linear matrix inequalities
1.1.1 What are linear matrix inequalities?
1.1.2 Useful lemmas for linear matrix inequalities
1.1.3 Advantages of linear matrix inequalities
1.1.4 Some standard linear matrix inequalitie problems
1.2 Spacecraft attitude kinematics and dynamics
1.2.1 Attitude representations
1.2.2 Attitude kinematics
1.2.3 Attitude dynamics
References

2.State feedback nonfragile control
2.1 Introduction
2.2 Problem formulation
2.2.1 Attitude dynamics modeling
2.2.2 Control objective
2.3 State feedback nonfragile control law
2.3.1 Some lemmas
2.3.2 Sufficient conditions under additive perturbation
2.3.3 Sufficient conditions under multiplicative perturbation
2.4 Simulation test
2.4.1 Simulation results under additive perturbation
2.4.2 Simulation results under multiplicative perturbation
2.4.3 Simulation results using a mixed H2/HN controller
2.5 Conclusions
References

3.Dynamic output feedback nonfragile control
3.1 Introduction
3.2 Problem formulation
3.2.1 Attitude system description
3.2.2 Nonfragile control problem
3.2.3 Control objective
3.3 Dynamic output feedback nonfragile control law design
3.3.1 Some lemmas
3.3.2 Controller design under additive perturbation
3.3.3 Controller design under multiplicative perturbation
3.3.4 Controller design under coexisting additive and multiplicative perturbations
3.4 Simulation test
3.4.1 Simulation results under additive perturbation
3.4.2 Simulation results under multiplicative perturbation
3.4.3 Simulation results under coexisting additive and multiplicative perturbations
3.5 Conclusions
References

4.Observer-based fault tolerant delayed control
4.1 Introduction
4.2 Problem formulation
4.2.1 Attitude system description
4.2.2 Control objective
4.3 Observer-based fault tolerant control scheme
4.3.1 Intermediate observer design
4.3.2 Delayed controller design
4.3.3 Control solution
4.4 Simulation test
4.4.1 Simulation results using the proposed controller
4.4.2 Simulation results using the prediction-based sampled-dataHN controller
4.4.3 Comparison analysis using different controllers
4.5 Conclusions
References

5.Observer-based fault tolerant nonfragile control
5.1 Introduction
5.2 Problem formulation
5.2.1 Attitude system description
5.2.2 Stochastically intermediate observer design
5.2.3 Nonfragile controller design
5.2.4 Control objective
5.3 Feasible solution for both cases
5.3.1 Some lemmas
5.3.2 Sufficient conditions under additive perturbation
5.3.3 Sufficient conditions under multiplicative perturbation
5.4 Simulation test
5.4.1 Comparison analysis under additive perturbation
5.4.2 Comparison analysis under multiplicative perturbation
5.5 Conclusions
References

6.Disturbance observer-based controlwith input MRCs
6.1 Introduction
6.2 Problem formulation
6.2.1 Attitude system description
6.2.2 Control objective
6.3 Controller design and analysis
6.3.1 Some lemmas
6.3.2 Coexisting conditions for observer and controller gains
6.3.3 Proof and analysis
6.4 Simulation test
6.4.1 Nonzero angular rates
6.4.2 Zero angular rates
6.4.3 Evaluation indices for the three conditions
6.4.4 Parametric influence on control performance
6.5 Conclusions
References

7.Improved mixed H2/HN control with poles assignment constraint
7.1 Introduction
7.2 Problem formulation
7.2.1 Flexible spacecraft dynamics with two bending modes
7.2.2 HN and H2 performance constraint
7.2.3 Poles assignment
7.2.4 Control objective
7.3 Improved mixed H2/HN control law
7.3.1 Some lemmas
7.3.2 H2 control
7.3.3 Mixed H2/HN control
7.4 Simulation test
7.4.1 Simulation results using static output feedback controller
7.4.2 Simulation results using improved mixed H2/HN controller
7.4.3 Simulation results using a traditional mixed H2/HN controller
7.4.4 Comparison analysis using different controllers
7.5 Conclusions
References

8.Nonfragile HN controlwith input constraints
8.1 Introduction
8.2 Problem formulation
8.2.1 Attitude system description of flexible spacecraft
8.2.2 Passive and active vibration suppression cases
8.2.3 Brief introduction on piezoelectric actuators
8.2.4 Improved model and control objective
8.3 Nonfragile HN control law
8.3.1 Sufficient conditions under additive perturbation
8.3.2 Sufficient conditions under multiplicative perturbation
8.4 Simulation test
8.4.1 Comparisons of control performance under additive perturbation
8.4.2 Comparisons of control performance under multiplicative perturbation
8.4.3 Simulation comparison analysis
8.5 Conclusions
References

9.Antidisturbance controlwith active vibration suppression
9.1 Introduction
9.2 Problem formulation
9.2.1 Attitude dynamics modeling
9.2.2 Preliminaries
9.2.3 Control objective
9.3 Antidisturbance control law with input magnitude, and rate constraints
9.3.1 Stochastically intermediate observer design
9.3.2 Antidisturbance controller design
9.3.3 Sufficient conditions for uniform ultimate boundedness
9.3.4 Sufficient conditions for HN control strategy
9.3.5 Sufficient conditions for input magnitude, and rate constraints
9.4 Simulation test
9.4.1 Simulation results using an antidisturbance controller
9.4.2 Simulation results using a mixed H2/HN controller
9.5 Conclusions
References

10.Chaotic attitude trackingcontrol
10.1 Introduction
10.2 Problem formulation
10.2.1 Chaotic attitude dynamics
10.2.2 Chaotic system characteristics and chaotic attractor
10.2.3 Tracking error dynamics and control objective
10.3 Adaptive variable structure control law
10.4 Simulation test
10.5 Conclusions
References

11.Underactuatedchaotic attitude stabilization control
11.1 Introduction
11.2 Problem formulation
11.2.1 Chaotic attitude system description
11.2.2 Two examples of Chen and Lu systems
11.2.3 Control objective
11.3 Sliding mode control law
11.3.1 Reference trajectory design
11.3.2 Controller design
11.4 Simulation test
11.4.1 Simulation results for the failure of one actuator
11.4.2 Simulation results for failure of two actuators
11.5 Conclusions
References
Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服