-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
太空天气入门 版权信息
- ISBN:9787030723031
- 条形码:9787030723031 ; 978-7-03-072303-1
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
太空天气入门 本书特色
这本教科书介绍了太阳与地球之间的关系,并说明了它如何影响我们的技术社会,它从空间天气的实践角度介绍了空间物理学,并使学生了解日地关系。
太空天气入门 内容简介
太空天气(即空间天气)是空间科学的一个新兴领域,主要研究日地关系对社会和技术的影响。太阳对地球的空间环境有着巨大的影响,它以电磁辐射和粒子辐射的形式释放出大量的能量,这些辐射有可能损坏或摧毁卫星、导航、通信和配电系统,伤害或杀死宇航员。这本教科书介绍了太阳和地球之间的关系,并展示了它如何影响我们的技术和社会。 作为首批针对非理科专业的太空天气本科教材之一,本书利用太空天气的实践知识来介绍空间物理学,以帮助学生了解太阳与地球的关系。全文对重要的术语进行了定义,每章都包含关键概念、补充和复习,以帮助学生加强理解。这本教科书可以作为空间物理入门课程的理想教材。 马克·莫德温曾是加州大学洛杉矶分校地球与空间科学系、地球物理与行星物理研究所的空间物理学教授(现就职于密歇根大学)。其主要研究领域是磁层和日球层等离子体物理,并致力于中小学生的空间科学教育和科普活动。
太空天气入门 目录
译者序
原书前言
致谢
**章 什么是太空天气? 1
1.1 关键概念 1
1.2 导言 1
1.3 太空天气简史 4
1.4 太空天气对社会的影响 12
1.5 补充材料 12
1.6 问题与思考 15
第二章 多变的太阳 16
2.1 关键概念 16
2.2 导言 16
2.3 温度和热量 18
2.4 辐射和对流 18
2.5 太阳的结构 19
2.6 动力学过程 25
2.7 补充材料——电磁波谱和辐射 29
2.8 问题与思考 33
第三章 日球层 34
3.1 关键概念 34
3.2 导言 34
3.3 日冕和太阳风 35
3.4 行星际磁场 36
3.5 日冕物质抛射 38
3.6 外日球层 39
3.7 宇宙射线 39
3.8 补充材料——如何描述运动? 41
3.9 问题与思考 45
第四章 地球的空间环境 46
4.1 关键概念 46
4.2 导言 46
4.3 偶极磁场 46
4.4 内磁层结构 48
4.5 太阳风和磁层的相互作用 50
4.6 磁重联 51
4.7 磁尾 52
4.8 等离子片对流 52
4.9 磁层动力学 53
4.10 补充材料 56
4.11 问题与思考 60
第五章 地球高层大气 62
5.1 关键概念 62
5.2 导言 62
5.3 热层 63
5.4 电离层 65
5.5 电离层结构 66
5.6 电离层变化 67
5.7 极光 67
5.8 对通信的影响 69
5.9 补充材料 70
5.10 问题与思考 70
第六章 太空风暴对技术的影响 72
6.1 关键概念 72
6.2 导言 72
6.3 卫星轨道 73
6.4 对卫星的辐射效应 75
6.5 无线电通信和导航受到的影响 77
6.6 地面系统受到的影响 79
6.7 补充材料 80
6.8 问题与思考 84
第七章 在太空生活的风险 86
7.1 关键概念 86
7.2 导言 86
7.3 辐射 87
7.4 长期太空旅行的难题 92
7.5 在月球和火星上生活 94
7.6 星际旅行 95
7.7 补充材料 95
7.8 问题与思考 99
第八章 其他太空天气现象 100
8.1 关键概念 100
8.2 导言 100
8.3 气候变化和太空天气的关系 101
8.4 小行星和彗星撞击 103
8.5 附近的超新星 104
8.6 补充材料 105
8.7 问题与思考 108
参考文献 109
阅读推荐 110
附录A 网络资源 112
附录B 国际单位制 114
附录C 国际单位制前缀(词头) 115
彩图
Contents
Translator’s preface
Original book preface
Acknowledgments
1 What is space weather? 1
1.1 Key concepts 1
1.2 Introduction 1
1.3 Brief history 4
1.4 Impacts of space weather on society 12
1.5 Supplements 12
1.6 Problems and thoughts 15
2 Variable Sun 16
2.1 Key concepts 16
2.2 Introduction 16
2.3 Temperature and heat 18
2.4 Radiation and convection 18
2.5 Solar structure 19
2.6 Dynamics and processes 25
2.7 Supplements — electromagnetic spectrum and radiation 29
2.8 Problems and thoughts 33
3 Heliosphere 34
3.1 Key concepts 34
3.2 Introduction 34
3.3 Corona and the solar wind 35
3.4 Interplanetary magnetic field 36
3.5 Coronal mass ejections 38
3.6 Outer heliosphere 39
3.7 Cosmic rays 39
3.8 Supplements——how do we describe motion? 41
3.9 Problems and thoughts 45
4 Earth’s space environment 46
4.1 Key concepts 46
4.2 Introduction 46
4.3 Dipole magnetic field 46
4.4 Structure of the inner magnetosphere 48
4.5 Interaction of the solar wind and magnetosphere 50
4.6 Magnetic reconnection 51
4.7 Magnetotail 52
4.8 Plasma sheet convection 52
4.9 Dynamics of the magnetosphere 53
4.10 Supplements 56
4.11 Problems and thoughts 60
5 Earth’s upper atmosphere 62
5.1 Key concepts 62
5.2 Introduction 62
5.3 Thermosphere 63
5.4 Ionosphere 65
5.5 Ionospheric structure 66
5.6 Ionospheric variations 67
5.7 Aurora 67
5.8 Impacts on communication 69
5.9 Supplements 70
5.10 Problems and thoughts 70
6 The technological impacts of space storms 72
6.1 Key concepts 72
6.2 Introduction 72
6.3 Satellite orbits 73
6.4 Radiation impacts on satellites 75
6.5 Radio communication and navigation impacts 77
6.6 Ground system impacts 79
6.7 Supplements 80
6.8 Problems and thoughts 84
7 The perils of living in space 86
7.1 Key concepts 86
7.2 Introduction 86
7.3 Radiation 87
7.4 Problems of long-duration space travel 92
7.5 Living on the Moon and Mars 94
7.6 Interstellar travel 95
7.7 Supplements 95
7.8 Problems and thoughts 99
8 Other space weather phenomena 100
8.1 Key concepts 100
8.2 Introduction 100
8.3 Climate variability and space weather 101
8.4 Asteroid and comet impacts 103
8.5 Nearby supernova 104
8.6 Supplements 105
8.7 Problems and thoughts 108
References 109
Recommended reading 110
Appendix A: Web resources 112
Appendix B: SI units 114
Appendix C: SI prefixes 115
Color plate section 116
太空天气入门 节选
**章 什么是太空天气? “太空天气”(又译为“空间天气”)是指发生在太阳、太阳风、磁层、电离层和热层中的一些现象,它们会影响太空和地面技术系统的性能和可靠性,并可能危及人类的生命或健康。太空环境中的不利条件可能导致卫星运行、通信、导航和配电网等系统的中断,造成各种社会经济损失。 ——美国《国家空间天气战略计划》,1995年。联邦气象服务和研究支持协调办公室,FCM-P30-1995,华盛顿特区。 1.1 关键概念 ●太空天气(空间天气,space weather) ●气候(climate) ●气象学(meteorology) ●地球大气层(Earth’s atmosphere) 1.2 导言 自20世纪50年代末以来,我们迈入了航天文明时代。借助机器人和载人航天器,我们已开始对太阳系进行探测。人们现已了解到,我们被包围在一个充满活力、强烈活动的太阳的大气层中,太阳不仅为地球上的生命提供能量,也会对其卫星和通信系统造成严重破坏。太空天气是空间科学的新兴领域,研究太阳如何影响地球的空间环境以及这种相互作用的技术和社会影响——对地球轨道卫星的损害或毁坏、对宇航员(在执行月球、火星和地球长期飞行任务期间)的安全威胁以及对全球通信和导航系统的可靠性和准确性的影响。 现代社会依赖于对天气的准确预报(温度、湿度、降雨等的日常变化)和对气候的理解(长期天气趋势),以促进商业、农业、交通、能源政策的发展及缓解自然灾害。认知天气的科学——气象学是人类为了理解自然环境而做的昀长久的巨大努力之一。与气象学一样,太空天气学的目的也是了解和预测气候和天气,但是聚焦于外层空间。其实几千年来太空风暴一直肆虐在我们的头顶上,只是我们不曾感知。但随着太空时代的到来,人们开始注意到恶劣太空天气的破坏力。 和普通天气一样,太空天气也起源于太阳。这两种天气的主要区别在于发生的区域以及影响它们的太阳能量类型不同。普通天气关注的区域从地球表面延伸到昀高云层的顶部,即大约距地球表面10km处。而太空天气关注的区域从地球一直延伸到太阳周围的太空环境(译者注:随着深空探测的发展,其他行星例如土星、木星、天王星等附近的太空天气也日益受到关注)。太空开始于地球大气层的一个区域,我们称之为热层,其起点高度距地球表面约为100km。航天飞机和太空站在距地球表面大约350km的高度飞行,彩图1显示了航天飞机拍摄的地球大气层图片。在距地球表面大约100km处,地球大气的蓝色与太空的黑色形成了鲜明的对比。 普通天气和太空天气的第二个区别是影响这两个区域的太阳能量类型不同。太阳不断向太空发射两种主要的能量:电磁辐射和微粒辐射。可见光、无线电波、微波、红外线、紫外线、 X射线和伽马射线是电磁辐射的形式,太阳的这些电磁辐射以约1400W/m2①的能量浇灌着地球大气层顶部,并不均匀地加热着低层大气、地表和海洋。风就是由这些大气温度的差异驱动的。 太阳还不断地发射微粒(微小的颗粒,minute particle)辐射,带电原子和亚原子粒子(主要是质子和电子)形成所谓的太阳风。像地球上的风一样,太阳风也是由温度差异驱动的,但这些差异体现在太阳高层大气和行星际空间之间。太阳风携带着太阳磁场扩展到整个太阳系,形成了一个被称为日球层(Heliosphere,“helios”是希腊语中太阳的意思)的星际空间区域。 太阳风既不稳定也不均匀,在不断地变化着。这些变化以多种方式影响地球的空间环境,包括产生新的微粒辐射轰击地球高层大气,造成极光(北极光和南极光)和强电流,并干扰通信、电网和卫星导航。 太阳表面偶尔会产生喷发现象并使得很大一部分太阳大气以很高的速度流出。这种现象被称为日冕物质抛射(coronal mass ejections,CMEs),每次抛射1×1012kg的物质(相当于25万艘航空母舰),能够以超过1000km/s的速度离开太阳(彩图2)。如果 CMEs是向地球运动的,一场巨大的太空风暴会在我们头顶上发生,使卫星瘫痪,导致飞机机组人员和乘客经受的辐射照射量增加,使某些波长的无线电通信受阻,并破坏地球上的电力系统。 这些太空风暴,就如2005年的卡特里娜飓风等气象风暴一样,曾对技术系统造成过严重破坏。1989年3月,一个大型的 CME撞击地球,导致加拿大东部大面积停电。新兴的太空天气学试图了解太空风暴的成因及其对地球上科技基础设施的影响,我们希望能够预测太空天气并降低损害。 科学中一些专有技术名词的起源 古希腊人认为天空是围绕地球的同心球体,行星(希腊语中的流浪者)、太阳和月亮在它们各自的天球上移动,而星星则在它们后面的天球上以固定步伐移动。科学借用了这一世界观,命名行星和太阳的同心区域时使用希腊语的前縀加上希腊语后縀“球体”(sphere)(译者注:中文译为“圈”或“层”)。地球的岩石表面通常被称为岩石圈(lithosphere,“litho”的意思是石头),地球上水的总称为水圈(hydrosphere,“hydro”的意思是水),存在生命的区域为生物圈(biosphere,“bio”的意思是生命)。包围地球的一层气体被称为大气层[atmosphere,“atmos”的意思是蒸气(vapor)或气态]。大气被进一步分为多个子区域,如表1.1中所示。层之间的边界称为“顶(pause)”(译者注:英文原意为“暂停”,例如,对流层和平流层之间的边界是对流层顶,tropopause)。后几章将再介绍几个其他“层”和“顶”。图1.1显示大气层各个子层随高度的分布情况。需要注意的是,每个层具有不同的温度随高度变化的廓线。例如,对流层的温度随着高度的升高而降低,而平流层的温度随着高度的升高而升高。 表1.1 用于地球大气层不同区域的前缀 图1.1 地球大气层的垂直温度分布 虚线表示温度随高度的变化。各个区域由温度随高度变化的趋势决定(该图出自 Cislunar Aerospace公司) 1.3 太空天气简史 针对太空天气的研究始于对三种自然现象——极光(也称为北极光或南极光)、地球磁场和太阳黑子(在太阳表面观测到的黑暗区域)的系统观测。尽管对极光的系统研究直到16世纪才开始,但因为极光可以用肉眼看到,所以已经被观察了几千年。在17世纪初,灵敏的指南针和望远镜的出现使得针对地球磁场和太阳黑子本质的探索成为可能。 研究太空天气可以追溯这三种现象相互关联的根源。**次试探性溯源工作是在19世纪中叶开展的。一百多年来,我们逐渐扩展了对太阳和地球空间环境的了解,并由此开始发展连接太阳和地球的物理模型。本节简要介绍了这些关联的发现史,并介绍了一些引导我们理解日地关系的科学家。正如其他科学领域一样,发展太空天气领域与我们理解物理和化学以及开发新技术等的目标一致——使我们能够“看到”“看不见”的东西(由于太小或太远而无法用肉眼看到,或超出了我们的视觉、听觉或感知的能力范围的事物,例如无线电波和磁场)。附录A提供了一个网站,详细记录了我们对太空天气认知的时间表。 1.3.1 极光 我们的祖先很早就观测到了极光(aurorae)。但直到18世纪,大多数关于极光的论述都来自那些可能从未观察过极光的人对极光起源的猜测。这些猜测通常跟从了亚里士多德(Aristotle,公元前384—前322年)认为极光是燃烧的火焰的想法,或勒内 笛卡儿(René Descartes,1596—1650年)认为极光是被冰晶或雪晶反射的月光或阳光的想法。对极光的系统性观测始于16世纪。有史以来昀伟大的天文学家之一第谷 布拉赫(Tycho Brahe,1546—1601年)记录了1582年至1598年间在乌拉尼堡天文台(丹麦)发生的极光。他发现极光出现的次数每年都在变化,但没有记录到任何系统或规律的变化。1621年9月12日,来自法国南部的天文学家皮埃尔 加森迪(Pierre Gassendi,1592—1655年)和来自威尼斯的伽利略①观测到了相同的极光。加森迪称之为北极光(lights aurorae, aurora borealis,或拉丁语的 northern dawn),这个名字自那以后一直与极区出现的光(polar lights)联系在一起。他指出,极光必须发生在地球大气层中很高的地方,这样才能使相隔很远的观测者看到同样的现象。 在18世纪,许多观察报告开始阐释极光的起源。法国人让-雅克 德奥尔图尔 德迈兰(Jean-Jacques d’Ortour de Mairan,1678—1771年)在1726年首次粗略测量了极光高度,其结果与加森迪关于极光发生在高层大气的观察报告一致。英国科学家亨利 卡文迪什(Henry Cavendish,1731—1810年)在1790年使用三角测量方法正确地估计极光高度为80—112km。然而,这些研究对极光高度的估计仍有很大的不确定性。直到1900年左右,挪威科学家卡尔 斯托默(Carl St.rmer,1874—1957年)才使用摄影技术准确地测量了极光高度。 1773年2月17日,詹姆斯 库克(James Cook)船长在南纬58°附近的印度洋上观测到极光,成为**个观测南极光(他称之为 aurora australis)的欧洲人。他在航海日志中写道:“在天空中可以看到亮光,类似于那些存在于北半球的光,它们以北极光这个名称而闻名。” 在19世纪,随着极地探险家报告的汇编,极光在以北极和南极为中心的大型椭圆内的分布变得清晰。约翰 富兰克林(John Franklin)船长确定了极光观测到的次数在靠近极点时减少的规律,暗示着存在一个极光区。他后来在试图寻找西北航道时与船员一起不幸遇难。1833年,德国地理学家乔治 威廉 蒙克(Georg Wilhelm Muncke,1772—1847年)指出,存在一个极光发生率昀大的区域,它的纬度范围是有限的。1860年,耶鲁大学的伊莱亚斯 卢米斯(Elias Loomis,1811—1888年)教授发表了**张显示了极光昀常见区域的北极地图(图1.2)。 图1.2 卢米斯教授19世纪晚期研究得到的极光椭圆形 需要注意的是,极光发生的区域围绕着极点,但不是在极点(Loomis,1869) 因此,到19世纪中叶,人们已经知道一些关于极光的事实:它们发生在南北两极地区的椭圆带中,且位于高层大气中。针对极光产生原因的探索仍在进行中。 1.3.2 地磁场 1088年,中国百科全书式作家沈括(1031—1095年)首次描述了指南针:“以磁磄针锋,则能指南。”来自圣奥尔本斯的亚历山大 内翰(Alexander Neckham,1157—1217年)在1187年出版了他的《事物的本质》一书,成为了**个描述指南针的欧洲人。内翰可能听说过通过丝绸之路从中国传到西欧的中国指南针。1576年,罗伯特 诺曼(Robert Norman)发现地球磁场存在一个垂直的分量,并
- >
苦雨斋序跋文-周作人自编集
苦雨斋序跋文-周作人自编集
¥5.8¥16.0 - >
自卑与超越
自卑与超越
¥12.7¥39.8 - >
诗经-先民的歌唱
诗经-先民的歌唱
¥13.5¥39.8 - >
随园食单
随园食单
¥15.4¥48.0 - >
山海经
山海经
¥19.7¥68.0 - >
二体千字文
二体千字文
¥22.4¥40.0 - >
龙榆生:词曲概论/大家小书
龙榆生:词曲概论/大家小书
¥13.0¥24.0 - >
有舍有得是人生
有舍有得是人生
¥17.1¥45.0