书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
Python数据分析与挖掘实战(第2版)

Python数据分析与挖掘实战(第2版)

出版社:机械工业出版社出版时间:2022-04-01
开本: 16开 页数: 352
中 图 价:¥57.9(6.5折) 定价  ¥89.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Python数据分析与挖掘实战(第2版) 版权信息

Python数据分析与挖掘实战(第2版) 本书特色

适读人群 :关注高级数据分析的人员;从事数据挖掘应用研究的科研人员;数据挖掘开发人员;需求分析及系统设计人员;开设数据挖掘课程的高校的教师和学生。为了帮助读者更好地使用本书,本书提供配套的原始数据文件、Python程序代码,读者可以从“华章计算机”公众号,回复64002免费获取。为方便教师授课,本书还提供了PPT课件,教师可到网址http://www.tipdm.org/tj/840.jhtml咨询获取。 (1)畅销书全新升级,第1版销售超过10万册,被国内100余所高等院校采用为教材,同时被广大数据科学工作者奉为经典,是该领域公认的事实标准。 (2)作者在大数据挖掘与分析等领域有10余年的工程实践、教学和创办企业的经验,不仅掌握行业的z新技术和实践方法,而且洞悉学生和老师的需求与痛点。 (3)本书提供丰富的配套资源,含上机环境、Python源代码、案例建模数据、教学PPT。

Python数据分析与挖掘实战(第2版) 内容简介

内容简介本书是Python数据分析与挖掘领域的认可的事实标准,第1版销售超过10万册,销售势头依然强劲,被国内100余所高等院校采用为教材,同时也被广大数据科学工作者奉为经典。作者在大数据挖掘与分析等领域有10余年的工程实践、教学和创办企业的经验,不仅掌握行业的近期新技术和实践方法,而且洞悉学生和老师的需求与痛点,这为本书的内容和形式提供了强有力的保障,这是本书第1版能大获成功的关键因素。全书共13章,分为三个部分,从技术理论、工程实践和进阶提升三个维度对数据分析与挖掘进行了详细的讲解。**部分 基础篇(~5章)主要讲解了Python数据分析与挖掘的工具和技术理论,包括数据挖掘的基础知识、Python数据挖掘与建模工具、数据挖掘的建模过程,以及挖掘建模的常用算法和原理等内容。第二部分 实战篇(第6~12章)通过工程实践案例讲解了数据挖掘技术在金融、航空、零售、能源、制造、电商等行业的应用。在案例组织结构上,本书按照“介绍案例背景与挖掘目标→阐述分析方法与过程→完成模型构建”的顺序进行,在建模过程关键环节,穿插程序实现代码。*后,通过上机实践加深对案例应用中的数据挖掘技术的理解。第三部分 提高篇(第13章)重点讲解了基于Python引擎的开源数据挖掘建模平台(TipDM)的功能和使用方法,以航空公司客户价值分析为案例,介绍了如何使用该平台快速搭建数据分析与挖掘工程。本书不仅提供TipDM这样的上机实践环境,而且还提供配套的案例建模数据、Python源代码、教学PPT。

Python数据分析与挖掘实战(第2版) 目录

前言基础篇第1章 数据挖掘基础 21.1 某知名连锁餐饮企业的困惑 21.2 从餐饮服务到数据挖掘 41.3 数据挖掘的基本任务 51.4 数据挖掘建模过程 51.4.1 定义挖掘目标 61.4.2 数据取样 61.4.3 数据探索 71.4.4 数据预处理 81.4.5 挖掘建模 81.4.6 模型评价 81.5 常用数据挖掘建模工具 91.6 小结 11第2章 Python数据分析简介 122.1 搭建Python开发平台 142.1.1 所要考虑的问题 142.1.2 基础平台的搭建 142.2 Python使用入门 162.2.1 运行方式 162.2.2 基本命令 172.2.3 数据结构 192.2.4 库的导入与添加 242.3 Python数据分析工具 262.3.1 NumPy 272.3.2 SciPy 282.3.3 Matplotlib 292.3.4 pandas 312.3.5 StatsModels 332.3.6 scikit-learn 332.3.7 Keras 342.3.8 Gensim 362.4 配套附件使用设置 372.5 小结 38第3章 数据探索 393.1 数据质量分析 393.1.1 缺失值分析 403.1.2 异常值分析 403.1.3 一致性分析 443.2 数据特征分析 443.2.1 分布分析 443.2.2 对比分析 483.2.3 统计量分析 513.2.4 周期性分析 543.2.5 贡献度分析 553.2.6 相关性分析 583.3 Python主要数据探索函数 623.3.1 基本统计特征函数 623.3.2 拓展统计特征函数 663.3.3 统计绘图函数 673.4 小结 74第4章 数据预处理 754.1 数据清洗 754.1.1 缺失值处理 754.1.2 异常值处理 804.2 数据集成 804.2.1 实体识别 814.2.2 冗余属性识别 814.2.3 数据变换 814.2.4 简单函数变换 814.2.5 规范化 824.2.6 连续属性离散化 844.2.7 属性构造 874.2.8 小波变换 884.3 数据归约 914.3.1 属性归约 914.3.2 数值归约 954.4 Python主要数据预处理函数 984.5 小结 101第5章 挖掘建模 1025.1 分类与预测 1025.1.1 实现过程 1035.1.2 常用的分类与预测算法 1035.1.3 回归分析 1045.1.4 决策树 1085.1.5 人工神经网络 1155.1.6 分类与预测算法评价 1205.1.7 Python分类预测模型特点 1255.2 聚类分析 1255.2.1 常用聚类分析算法 1265.2.2 K-Means聚类算法 1275.2.3 聚类分析算法评价 1325.2.4 Python主要聚类分析算法 1335.3 关联规则 1355.3.1 常用关联规则算法 1365.3.2 Apriori算法 1365.4 时序模式 1425.4.1 时间序列算法 1425.4.2 时间序列的预处理 1435.4.3 平稳时间序列分析 1455.4.4 非平稳时间序列分析 1485.4.5 Python主要时序模式算法 1565.5 离群点检测 1595.5.1 离群点的成因及类型 1605.5.2 离群点检测方法 1605.5.3 基于模型的离群点检测方法 1615.5.4 基于聚类的离群点检测方法 1645.6 小结 167实战篇第6章 财政收入影响因素分析及预测 1706.1 背景与挖掘目标 1706.2 分析方法与过程 1716.2.1 分析步骤与流程 1726.2.2 数据探索分析 1726.2.3 数据预处理 1766.2.4 模型构建 1786.3 上机实验 1846.4 拓展思考 1856.5 小结 186第7章 航空公司客户价值分析 1877.1 背景与挖掘目标 1877.2 分析方法与过程 1887.2.1 分析步骤与流程 1897.2.2 数据探索分析 1897.2.3 数据预处理 2007.2.4 模型构建 2077.2.5 模型应用 2127.3 上机实验 2147.4 拓展思考 2157.5 小结 216第8章 商品零售购物篮分析 2178.1 背景与挖掘目标 2178.2 分析方法与过程 2188.2.1 数据探索分析 2198.2.2 数据预处理 2248.2.3 模型构建 2268.3 上机实验 2328.4 拓展思考 2338.5 小结 233第9章 基于水色图像的水质评价 2349.1 背景与挖掘目标 2349.2 分析方法与过程 2359.2.1 分析步骤与流程 2369.2.2 数据预处理 2369.2.3 模型构建 2409.2.4 水质评价 2419.3 上机实验 2429.4 拓展思考 2429.5 小结 243第10章 家用热水器用户行为分析与事件识别 24410.1 背景与挖掘目标 24410.2 分析方法与过程 24510.2.1 数据探索分析 24610.2.2 数据预处理 24910.2.3 模型构建 26010.2.4 模型检验 26110.3 上机实验 26210.4 拓展思考 26410.5 小结 265第11章 电子商务网站
展开全部

Python数据分析与挖掘实战(第2版) 作者简介

张良均 资深大数据挖掘与分析专家、模式识别专家、AI技术专家。有10余年大数据挖掘与分析经验,擅长Python、R、Hadoop、Matlab等技术实现的数据挖掘与分析,对机器学习等AI技术驱动的数据分析也有深入研究。 为电信、电力、政府、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。 华南师范大学、中南财经政法大学、广东工业大学、西安理工大学、广西科技大学、重庆交通大学、桂林电子科技大学等校外硕导或兼职教授。 撰写了《R语言数据分析与挖掘实战》《数据挖掘:实用案例分析》《Hadoop大数据分析与挖掘实战》等10余部畅销书,累计销售超过30万册。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服