气体热动力润滑与密封(Gas Thermohydrodynamic Lubrication and Seals) 版权信息
- ISBN:9787302598336
- 条形码:9787302598336 ; 978-7-302-59833-6
- 装帧:70g胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
气体热动力润滑与密封(Gas Thermohydrodynamic Lubrication and Seals) 本书特色
随着现代机械装备不断向高压、高速和高(低)温现等高参数化发展,高速气体轴承和高压气体密封设计中所面临的流固热等多场耦合、介质相变、高速流效应等气体润滑理论和设计方法问题日益突出。本书针对精密机电装备、石油、化工流程工业装备以及航空装备中典型气体轴承和密封结构形式,系统的阐述了气体润滑理论和分析方法,可作为高校机械工程等相关专业研究生教材,也可为相关领域的气体轴承和密封设计提供参考。
本书以高速气体轴承和高压气体密封的润滑设计为应用背景,系统阐述了多物理场耦合条件下的气体润滑理论和设计分析方法。
气体热动力润滑与密封(Gas Thermohydrodynamic Lubrication and Seals) 内容简介
本书全面系统的阐述了气体润滑与密封的理论和设计分析方法。内容包括:气体状态方程与基本性质、气体润滑方程、等温气体润滑理论、刚性表面气体热润滑理论、气体密封热弹流润滑理论、端面密封气体热弹流动态特性、高压气体冷凝析水润滑、密封实验与设计方法。
气体热动力润滑与密封(Gas Thermohydrodynamic Lubrication and Seals) 目录
Contents
CHAPTER 1 Properties of gases 1
Gas equations 1
Ideal gas equations 2
Gas index equation 3
Actual gas equation 5
Degree of gas molecular freedom 5
Specific heat capacity 7
Viscosity 7
Property of wet gas 11
Pressure 12
Humidity. 13
Dew point temperature. 14
References 14
CHAPTER 2 Gas lubrication equations 15
Reynolds equation 15
Derivation of Reynolds equation 16
Reynolds equation in the polar coordinate system 19
Reynolds equation in the cylindrical coordinate
system 19
Lubrication parameters 20
Energy equation 22
Chang of gas inner energy 23
External work on gas and energy loss 24
Solid heat conduction equation and the interface equation 26
Numerical analysis method 27
Finite difference method 27
Flow conservation 28
Friction force balance 34
References 35
CHAPTER 3 Isothermal gas lubrication 37
Sliders 37
Lubrication equation 38
Pressure boundary condition 40
Lubrication performance parameters 40
V
VI Contents
Hydrodynamic lubrication characteristics of sliders 41
Hydrodynamic lubrication characteristics of divergent sliders 43
Lubrication characteristics of the magnetic
head slider 45
Journal bearing and radial seal 51
Lubrication equations 52
Boundary conditions 52
Lubrication parameters 53
Lubrication characteristics 55
Spiral groove thrust bearing 56
Gas lubrication equations. 59
Pressure boundary conditions 60
Lubrication parameters 60
Lubrication characteristics 61
Spiral groove face seal 64
Lubrication equations 65
Pressure boundary conditions 65
Seal performance parameters 66
Lubrication regularity 66
References 71
CHAPTER 4 Gas thermohydrodynamic lubrication of rigid
surfaces 73
Sliders 73
Gas lubrication equations. 73
Boundary conditions 75
Thermal lubrication characteristics 75
Journal bearing and radial seal 79
Lubrication equations 79
Thermal boundary condition 80
Lubrication property 80
Spiral groove thrust bearing 83
Lubrication equations 83
Boundary conditions 85
Lubrication property 86
Spiral groove face seal 86
Temperature characteristics of gas film 91
Lubrication property 94
References 99
Contents
_x00E_VII
CHAPTER 5 Gas thermoelastohydrodynamic lubrication
of face seals 101
Fundamental equations 101
Lubrication equations 101
Boundary conditions 104
Choked fluid effect 107
Model validation 107
Pressure distribution characteristics 109
Characteristics of thermoelastic distortions of seal
faces 109
Characteristics of gas thermoelastohydrodynamic
lubrication 111
Mechanical distortions 111
Thermal distortions 115
Thermoelastic distortions 117
References 120
CHAPTER 6 Transient thermoelastohydrodynamic gas
lubrication of face seals 121
Fundamental equations 121
Dynamic equations 122
Lubrication equations 122
Boundary conditions 123
Dynamic characteristic parameter 123
Dynamic characteristics of isothermal gas lubrication 124
Axial stiffness and damping 124
Angular stiffness and damping 126
Amplitude-frequency characteristics of gas film 129
Dynamic characteristics of thermal gas lubrication of rigid surfaces 130
Axial stiffness and damping 131
Angular stiffness and damping 134
Amplitude-frequency characteristics of gas film 137
Dynamic characteristics of gas thermoelastohydrodynamic lubrication 137
Axial stiffness and damping 137
Angular stiffness and damping of gas film 139
Amplitude-frequency characteristics of
gas film 140
References 141
VIII Contents
CHAPTER 7 Vapor-condensed gas lubrication of face
seals 143
Fundamental equations 143
Wet gas equations 143
Vapor-condensed parameter 145
Characteristics of vapor condensation in gas lubrication
film 145
Laws of vapor condensation in gas lubrication film 146
Humidity 146
Seal clearance 147
Seal pressure 148
Rotational speed 148
Movement of liquid drops on gas lubrication surfaces 150
Surface wetting model 150
Surface-texture geometry parameters and
wettability 152
Droplet motion 158
Drop adsorption on seal surface 164
References 164
CHAPTER 8 Cryogenic gas lubrication of face seals 167
Fundamental equations 167
Lubrication equations 168
Boundary conditions 171
Phase change in gas lubrication film 172
Characteristics of thermoelastic distortions of seal faces 173
Characteristics of cryogenic gas lubrication 173
Ambient temperature 174
Rotation speed 174
References 177
CHAPTER 9 Surface grooves of gas face seals and testing technology 179
Surface grooves of gas face seals 179
Testing technology of gas face seals 185
Experimental setup 185
Face groove machining 185
Face morphology test 187
Experimental characteristics of gas face seals 188
Seal opening characteristic 188
Hydrodynamic characteristics 190
Contents IX
Surface wear 192
References 195
CHAPTER 10 Design of gas face seals 197
Force analysis of gas seals 197
Opening force 198
Closing force 198
O-ring friction force 199
Geometric parameters of gas face seals 199
Seal clearance 199
Seal face width 199
Balance diameter 200
Seal face and shaft (shaft sleeve) clearance 200
Performance parameters of gas face seals 201
Leakage rate 201
Gas film stiffness 201
Materials of the seal couple 202
Dimension design of seal rings 202
Design of rotor dimension 202
Design of stator dimension 203
Design of the face groove 204
Design of the secondary seal 205
Process of seal design and illustration 205
Process of seal design 205
Design conditions 206
Design steps 206
References 218
Index 219
展开全部
气体热动力润滑与密封(Gas Thermohydrodynamic Lubrication and Seals) 作者简介
白少先,男,1976年生,博士,浙江工业大学研究员、博士生导师。1998年7月毕业于山东轻工业学院机械设计与制造专业,获学士学位;2001年7月毕业于太原理工大学机械设计及理论专业,获硕士学位;2004年7月毕业于华南理工大学机械设计及理论专业,获博士学位;2006年11月从清华大学机械工程博士后流动站出站,进入浙江工业大学工作;2011年9月至2012年2月,在美国宾夕法尼亚大学从事访问学者研究。现为中国机械工程学会高级会员,中国机械工程学会摩擦学分会青年工作委员会委员,气体润滑专业委员会副主任委员,入选浙江省151人才计划第三层次、浙江省高校中青年学科带头人,获浙江省自然科学杰出青年基金资助。主要从事高温界面流体润滑与发动机密封研究,重点在高温流体润滑理论、密封表面减磨耐磨新结构设计、密封表面精密加工技术、密封实验测试技术、密封寿命预测与可靠性评定等方面开展工作。主持国家自然科学基金、浙江省自然科学基金、浙江省科技计划项目、清华大学摩擦学国家重点实验室开放基金项目、企业密封技术研发项目等10余项。发表SCI论文20余篇,获授权国家发明专利8项。