扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
湖南省志(1978-2002)?铁路志
-
>
公路车宝典(ZINN的公路车维修与保养秘籍)
-
>
晶体管电路设计(下)
-
>
基于个性化设计策略的智能交通系统关键技术
-
>
德国克虏伯与晚清火:贸易与仿制模式下的技术转移
-
>
花样百出:贵州少数民族图案填色
-
>
识木:全球220种木材图鉴
Kalman滤波理论及其在导航系统中的应用 版权信息
- ISBN:9787030270412
- 条形码:9787030270412 ; 978-7-03-027041-2
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 所属分类:>>
Kalman滤波理论及其在导航系统中的应用 内容简介
本书注重理论与工程实际的结合, 系统介绍了Kalman滤波基础理论及其*新发展, 涉及到滤波基本理论、实用Kalman滤波技术、鲁棒自适应滤波等。
Kalman滤波理论及其在导航系统中的应用 目录
目录
第二版前言
**版前言
第1章 绪论 1
1.1 Kalman滤波理论基础 1
1.1.1 滤波与估计 2
1.1.2 线性*小方差估计 3
1.1.3 正交投影定理 6
1.1.4 白噪声与有色噪声 7
1.2 Kalman滤波理论的发展及其应用 8
1.3 非线性滤波理论及方法 10
第2章 随机线性系统Kalman滤波基本方程 12
2.1 随机线性系统的数学模型 12
2.1.1 随机线性离散系统的数学模型 12
2.1.2 随机线性连续系统的数学模型 13
2.1.3 随机线性连续系统的离散化 15
2.2 随机线性离散系统的Kalman滤波方程 17
2.2.1 随机线性离散系统Kalman滤波基本方程 17
2.2.2 随机线性离散系统Kalman滤波方程的直观推导 19
2.2.3 随机线性离散系统Kalman滤波方程的投影法推导 22
2.3 随机线性连续系统Kalman滤波基本方程 26
2.4 随机线性离散系统的*优预测与平滑 31
2.4.1 随机线性离散系统的*优预测 31
2.4.2 隨机线性离散系统的*优平滑 33
思考题 36
第3章 Kalman滤波的稳定性及误差分析 38
3.1 稳定性的概念 38
3.2 随机线性系统的可控性与可观测性 39
3.2.1 随机线性系统的可控性 39
3.2.2 随机线性系统的可观测性 40
3.3 Kalman滤波稳定性的判别 40
3.3.1 随机线性系统的滤波稳定性判别 40
3.3.2 特定条件系统的滤波稳定性判别 43
3.4 Kalman滤波的误差分析 45
3.5 几种可观测性分析方法及其在惯性导航系统中的应用 48
3.5.1 惯性导航系统初始对准的误差方程 49
3.5.2 几种可观测性分析方法及其应用 49
思考题 54
第4章 实用Kalman滤波技术 55
4.1 噪声非标准假设条件下的Kalman滤波 55
4.1.1 存在确定性控制时的Kalman滤波 55
4.1.2 白噪声相关条件下的Kalman滤波 56
4.1.3 有色噪声条件下的Kalman滤波 58
4.2 Kalman滤波发散的抑制 61
4.2.1 Kalman滤波中的发散现象 61
4.2.2 Kalman滤波发散的抑制方法 63
4.3 分解滤波 66
4 3.1 非负定矩阵的三角形分解 66
4.3.2 观测值为标量时的误差方差平方根滤波 68
4.3.3 信息平方根滤波 71
4.3.4 序列平方根滤波 75
4.3.5 UD分解滤波 78
4.3.6 分解滤波在近地卫星GPS自主定轨算法中的应用 81
思考题 87
第5章 鲁棒自适应滤波 89
5.1 系统的不确定性 89
5.2 鲁棒控制技术基础 90
5.2.1 基础知识 90
5.2.2 H∞控制的标准设计问题 91
5.2.3 Hamilton矩阵与Hm标准设计问题的求解 92
5.3 H∞滤波 95
5.3.1 H∞滤波问题的表达 95
5 3.2 次优H∞滤波问题的解 96
5.3.3 H∞滤波器的参数化 97
5 3.4 GPS/INS组合导航系统H∞滤波 98
5.4 强跟踪滤波 100
5.4.1 强跟踪滤波器的引入 109
5.4.2 基于强跟踪滤波器的多传感器状态融合估计 103
5.4.3 实例 105
5.5 自适应滤波 108
5.5.1 相关法自适应滤波 108
5.5.2 Sage-Husa自适应Kalman滤波 111
5.5.3 激光陀螺随机漂移自适应Kalman滤波 118
思考题 120
第6章 联邦Kalman滤波 122
6.1 各子滤波器估计不相关条件下的联邦滤波算法 122
6.2 各子滤波器估计相关条件下的联邦滤波算法 124
6.2.1 信息分配原则与全局*优估计 124
6.2.2 联邦滤波算法的时间更新 126
6.2.3 联邦滤波算法的观测更新 128
6.2.4 联邦滤波器的结构 129
6.3 基于联邦滤波的惯性导航姿态组合算法 131
6.3.1 基于姿态速度位置组合方式的联邦滤波器实现结构 132
6.3.2 姿态组合观测方程 133
6.3.3 仿真实例 134
思考题 136
第7章 基于小波分析的多尺度Kalman滤波 137
7.1 小波分析 137
7.1.1 小波变换 137
7.1.2 多尺度分析 139
7.1.3 Mallat算法 142
7.2 多尺度系统理论 145
7.3 动态系统的多尺度Kalman滤波 146
7.4 多尺度Kalman滤波在导航系统中的应用 149
7.4.1 系统描述 149
7.4.2 多尺度模型的建立 150
7.4.3 状态的多尺度估计 152
7.4.4 多尺度Kalman滤波在导航系统中的应用实例 155
思考题 159
第8章 离散非线性系统滤波 160
8.1 扩展Kalman滤波 160
8.1.1 随机非线性离散系统标称状态线性化滤波 161
8.1.2 随机非线性离散系统扩展Kalman滤波 163
8.1.3 扩展Kalman滤波在车辆GPS/DR组合定位系统中的应用 164
8.2 Sigma点Kalman滤波 171
8.2.1 无迹Kalman滤波 171
8.2.2 中心微分Kalman滤波 174
8.2.3 平方根无迹Kalman滤波 176
8.2.4 Sigma点Kalman滤波在GPS/INS组合导航系统中的应用 177
8.3 粒子滤波 185
8.3.1 隐马尔可夫模型与贝叶斯推断 186
8.3.2 重要性采样 188
8.3.3 序列重要性采样 189
8.3.4 重采样法 191
8.3.5 优选重要性密度函数法 193
8.3.6 无迹粒子滤波在捷联惯性导航系统初始对准中的应用 194
思考题 202
参考文献 203
附录 208
附录A 随机变量与随机过程 208
A.1 随机变量的数学特征 208
A.2 随机过程 210
附录B 矩阵运算的一些公式 211
B.1 矩阵代数的一些常用性质公式 211
B.2 分块三角矩阵求逆公式 211
B.3 向量与矩阵的微分运算 212
B.4 矩阵求逆引理 215
附录C 几种常见估计方法的比较 217
第二版前言
**版前言
第1章 绪论 1
1.1 Kalman滤波理论基础 1
1.1.1 滤波与估计 2
1.1.2 线性*小方差估计 3
1.1.3 正交投影定理 6
1.1.4 白噪声与有色噪声 7
1.2 Kalman滤波理论的发展及其应用 8
1.3 非线性滤波理论及方法 10
第2章 随机线性系统Kalman滤波基本方程 12
2.1 随机线性系统的数学模型 12
2.1.1 随机线性离散系统的数学模型 12
2.1.2 随机线性连续系统的数学模型 13
2.1.3 随机线性连续系统的离散化 15
2.2 随机线性离散系统的Kalman滤波方程 17
2.2.1 随机线性离散系统Kalman滤波基本方程 17
2.2.2 随机线性离散系统Kalman滤波方程的直观推导 19
2.2.3 随机线性离散系统Kalman滤波方程的投影法推导 22
2.3 随机线性连续系统Kalman滤波基本方程 26
2.4 随机线性离散系统的*优预测与平滑 31
2.4.1 随机线性离散系统的*优预测 31
2.4.2 隨机线性离散系统的*优平滑 33
思考题 36
第3章 Kalman滤波的稳定性及误差分析 38
3.1 稳定性的概念 38
3.2 随机线性系统的可控性与可观测性 39
3.2.1 随机线性系统的可控性 39
3.2.2 随机线性系统的可观测性 40
3.3 Kalman滤波稳定性的判别 40
3.3.1 随机线性系统的滤波稳定性判别 40
3.3.2 特定条件系统的滤波稳定性判别 43
3.4 Kalman滤波的误差分析 45
3.5 几种可观测性分析方法及其在惯性导航系统中的应用 48
3.5.1 惯性导航系统初始对准的误差方程 49
3.5.2 几种可观测性分析方法及其应用 49
思考题 54
第4章 实用Kalman滤波技术 55
4.1 噪声非标准假设条件下的Kalman滤波 55
4.1.1 存在确定性控制时的Kalman滤波 55
4.1.2 白噪声相关条件下的Kalman滤波 56
4.1.3 有色噪声条件下的Kalman滤波 58
4.2 Kalman滤波发散的抑制 61
4.2.1 Kalman滤波中的发散现象 61
4.2.2 Kalman滤波发散的抑制方法 63
4.3 分解滤波 66
4 3.1 非负定矩阵的三角形分解 66
4.3.2 观测值为标量时的误差方差平方根滤波 68
4.3.3 信息平方根滤波 71
4.3.4 序列平方根滤波 75
4.3.5 UD分解滤波 78
4.3.6 分解滤波在近地卫星GPS自主定轨算法中的应用 81
思考题 87
第5章 鲁棒自适应滤波 89
5.1 系统的不确定性 89
5.2 鲁棒控制技术基础 90
5.2.1 基础知识 90
5.2.2 H∞控制的标准设计问题 91
5.2.3 Hamilton矩阵与Hm标准设计问题的求解 92
5.3 H∞滤波 95
5.3.1 H∞滤波问题的表达 95
5 3.2 次优H∞滤波问题的解 96
5.3.3 H∞滤波器的参数化 97
5 3.4 GPS/INS组合导航系统H∞滤波 98
5.4 强跟踪滤波 100
5.4.1 强跟踪滤波器的引入 109
5.4.2 基于强跟踪滤波器的多传感器状态融合估计 103
5.4.3 实例 105
5.5 自适应滤波 108
5.5.1 相关法自适应滤波 108
5.5.2 Sage-Husa自适应Kalman滤波 111
5.5.3 激光陀螺随机漂移自适应Kalman滤波 118
思考题 120
第6章 联邦Kalman滤波 122
6.1 各子滤波器估计不相关条件下的联邦滤波算法 122
6.2 各子滤波器估计相关条件下的联邦滤波算法 124
6.2.1 信息分配原则与全局*优估计 124
6.2.2 联邦滤波算法的时间更新 126
6.2.3 联邦滤波算法的观测更新 128
6.2.4 联邦滤波器的结构 129
6.3 基于联邦滤波的惯性导航姿态组合算法 131
6.3.1 基于姿态速度位置组合方式的联邦滤波器实现结构 132
6.3.2 姿态组合观测方程 133
6.3.3 仿真实例 134
思考题 136
第7章 基于小波分析的多尺度Kalman滤波 137
7.1 小波分析 137
7.1.1 小波变换 137
7.1.2 多尺度分析 139
7.1.3 Mallat算法 142
7.2 多尺度系统理论 145
7.3 动态系统的多尺度Kalman滤波 146
7.4 多尺度Kalman滤波在导航系统中的应用 149
7.4.1 系统描述 149
7.4.2 多尺度模型的建立 150
7.4.3 状态的多尺度估计 152
7.4.4 多尺度Kalman滤波在导航系统中的应用实例 155
思考题 159
第8章 离散非线性系统滤波 160
8.1 扩展Kalman滤波 160
8.1.1 随机非线性离散系统标称状态线性化滤波 161
8.1.2 随机非线性离散系统扩展Kalman滤波 163
8.1.3 扩展Kalman滤波在车辆GPS/DR组合定位系统中的应用 164
8.2 Sigma点Kalman滤波 171
8.2.1 无迹Kalman滤波 171
8.2.2 中心微分Kalman滤波 174
8.2.3 平方根无迹Kalman滤波 176
8.2.4 Sigma点Kalman滤波在GPS/INS组合导航系统中的应用 177
8.3 粒子滤波 185
8.3.1 隐马尔可夫模型与贝叶斯推断 186
8.3.2 重要性采样 188
8.3.3 序列重要性采样 189
8.3.4 重采样法 191
8.3.5 优选重要性密度函数法 193
8.3.6 无迹粒子滤波在捷联惯性导航系统初始对准中的应用 194
思考题 202
参考文献 203
附录 208
附录A 随机变量与随机过程 208
A.1 随机变量的数学特征 208
A.2 随机过程 210
附录B 矩阵运算的一些公式 211
B.1 矩阵代数的一些常用性质公式 211
B.2 分块三角矩阵求逆公式 211
B.3 向量与矩阵的微分运算 212
B.4 矩阵求逆引理 215
附录C 几种常见估计方法的比较 217
展开全部
书友推荐
- >
烟与镜
烟与镜
¥17.3¥48.0 - >
史学评论
史学评论
¥16.2¥42.0 - >
二体千字文
二体千字文
¥21.6¥40.0 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
经典常谈
经典常谈
¥19.5¥39.8 - >
山海经
山海经
¥22.4¥68.0 - >
人文阅读与收藏·良友文学丛书:一天的工作
人文阅读与收藏·良友文学丛书:一天的工作
¥16.5¥45.8 - >
【精装绘本】画给孩子的中国神话
【精装绘本】画给孩子的中国神话
¥17.6¥55.0
本类畅销
-
4.23文创礼盒A款--“作家言我精神状态”
¥42.3¥206 -
4.23文创礼盒B款--“作家言我精神状态”
¥42.3¥206 -
一句顶一万句 (印签版)
¥40.4¥68 -
百年书评史散论
¥14.9¥38 -
1980年代:小说六记
¥52.8¥69 -
中图网经典初版本封面-“老人与海”冰箱贴
¥20¥40