超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
高性能Python 第2版(影印版)

高性能Python 第2版(影印版)

作者:MichaGorelick
出版社:东南大学出版社出版时间:2021-05-01
开本: 16开 页数: 444
中 图 价:¥99.2(6.7折) 定价  ¥148.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

高性能Python 第2版(影印版) 版权信息

  • ISBN:9787564194932
  • 条形码:9787564194932 ; 978-7-5641-9493-2
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

高性能Python 第2版(影印版) 内容简介

你的Python代码也许运行正确,但是你需要运行得更快。本书针对Python 3进行了更新,经过拓展后的新版向你展示了如何在高数据量程序中定位性能瓶颈,显著提高代码速度。通过探索设计选择背后的基础理论,《高性能Python》将帮助你更深入地理解Python的实现。该如何利用多核架构和集群?或者该如何构建能够自由伸缩同时又不失可靠性的系统?有经验的Python程序员会学到很多问题的具体解决方案,了解到各个公司如何将高性能Python应用于社交媒体分析、产品机器学习等场景的曲折故事。 ? 更好地掌握NumPy、Cython、profilers ? 了解Python如何抽象底层计算机架构 ? 使用分析器来查找CPU世界和内存占用方面的瓶颈 ? 选择适合的数据结构来编写高效的程序 ? 加速矩阵和向量计算 ? 使用工具将Python脚本编译成机器码 ? 管理多I/O和并发操作 ? 将多处理代码转换为在本地或远程集群上运行 ? 使用Docker等工具更快地部署代码

高性能Python 第2版(影印版) 目录

Foreword Preface 1.Understanding Performant Python The Fundamental Computer System Computing Units Memory Units Communications Layers Putting the Fundamental Elements Together Idealized Computing Versus the Python Virtual Machine So Why Use Python How to Be a Highly Performant Programmer Good Working Practices Some Thoughts on Good Notebook Practice Getting the Joy Back into Your Work 2.Profiling to Find Bottlenecks. Profiling Efficiently Introducing the Julia Set Calculating the Full Julia Set Simple Approaches to Timing—print and a Decorator Simple Timing Using the Unix time Command Using the cProfile Module Visualizing cProfile Output with SnakeViz Using line_profiler for Line-by-Line Measurements Using memory_profiler to Diagnose Memory Usage Introspecting an Existing Process with PySpy Bytecode: Under the Hood Using the dis Module to Examine CPython Bytecode Different Approaches, Different Co mplexity Unit Testing During Optimization to Maintain Correctness No-op @profile Decorator Strategies to Profile Your Code Successfully Wrap-Up 3.Lists and Tuples A More Efficient Search Lists Versus Tuples Lists as Dynamic Arrays Tuples as Static Arrays Wrap-Up 4.Dictionaries and Sets. How Do Dictionaries and Sets Work Inserting and Retrieving Deletion Resizing Hash Functions and Entropy Dictionaries and Namespaces Wrap-Up 5.Iterators and Generators. Iterators for Infinite Series Lazy Generator Evaluation Wrap-Up 6.Matrix and Vector Computation. Introduction to the Problem Aren't Python Lists Good Enough Problems with Allocating Too Much Memory Fragmentation Understanding perf Making Decisions with perf's Output Enter numpy Applying numpy to the Diffusion Problem Memory Allocations and In-Place Operations Selective Optimizations: Finding What Needs to Be Fixed numexpr: Making In-Place Operations Faster and Easier A Cautionary Tale: Verify “Optimizations"(scipy) Lessons from Matrix Optimizations Pandas Pandas's Internal Model Applying a Function to Many Rows of Data Building DataFrames and Series from Partial Results Rather than Concatenating There's More Than One (and Possibly a Faster) Way to Do a Job Advice for Effective Pandas Development asu Wrap-Up 7.Compiling to C. What Sort of Speed Gains Are Possible JIT Versus AOT Compilers Why Does Type Information Help the Code Run Faster Using a C Compiler Reviewing the Julia Set Example Cython Compiling a Pure Python Version Using Cython pyximport Cython Annotations to Analyze a Block of Code Adding Some Type Annotations Cython and numpy Parallelizing the Solution with OpenMP on One Machine Numba Numba to Compile NumPy for Pandas PyPy Garbage Collection Differences Running PyPy and Installing Modules A Summary of Speed Improvements When to Use Each Technology Other Upcoming Projects Graphics Processing Units (GPUs) Dynamic Graphs: PyTorch Basic GPU Profiling Performance Considerations of GPUs When to Use GPUs Foreign Function Interfaces ctypes cffi f2py CPython Module Wrap-Up 8.Asynchronous l/0. 9.The multiprocessing Module. 10.Clusters and Job Queues 11.Using Less RAM. 12.Lessons from the Field. Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服