图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册

基于数值模拟的设计理论与方法

作者:韩旭
出版社:科学出版社出版时间:2021-05-01
开本: 其他 页数: 258
本类榜单:工业技术销量榜
中 图 价:¥148.5(7.5折) 定价  ¥198.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

基于数值模拟的设计理论与方法 版权信息

基于数值模拟的设计理论与方法 内容简介

本书共分4部分13章,是作者近10年来在复杂结构的数字化设计中的共性关键技术及应用方面研究成果的总结。复杂结构的几何、工艺及功能需求等存在高度复杂性、多样性和不确定性,这使得利用模拟的方法对其进行设计时在建模、分析、优化等方面的存在一系列技术难题,特别是复杂结构设计的精度、效率和可靠性难以保证。针对这些设计问题中的关键共性技术难题,本书深入、系统地介绍了基于模拟的复杂结构优选设计技术、算法及其工程应用,主要包括基于计算反求方法的复杂结构高精度数字化模型的建模技术、基于代理模型和缩减基方法的复杂结构快速分析技术、满足多功能需求的复杂结构多目标设计技术、基于非概率模型的复杂装备不确定性分析和设计技术。本书是对现代设计方法上的原创成果的总结与概括,可供从事机械工程、土木工程、交通工程、工程力学等领域的技术人员参考,也可以作为相关专业的教师、研究生和本科生的教学参考书。

基于数值模拟的设计理论与方法 目录

Contents
1 Introduction 1
1.1 Background and Significance 1
1.2 Key Scientific Issues and Technical Challenges 4
1.3 State-of-the-Art 7
1.3.1 Theory and Methods for High-Fidelity Numerical Modeling 7
1.3.2 Theory and Methods for Rapid Structural Analysis for Complex Equipment 9
1.3.3 Theory and Methods for Efficient Structural Optimization Design 10
1.3.4 Theory and Methods for Uncertainty Analysis and Reliability Design 11
1.4 Contents of This Book 12
References 14
2 Introduction to High-Fidelity Numerical Simulation Modeling Methods 17
2.1 Engineering Background and Significance 17
2.2 Modeling Based on Computational Inverse Techniques 20
References 26
3 Computational Inverse Techniques 29
3.1 Introduction 29
3.2 Sensitivity Analysis Methods 31
3.2.1 Local and Global Sensitivity Analysis 31
3.2.2 Direct Integral-Based GSA Method 32
3.2.3 Numerical Examples 37
3.2.4 Engineering Application: Global Sensitivity Analysis of Vehicle Roof Structure 38
3.3 Regularization Methods for Dl-Posed Problem 41
3.3.1 III-Posedness Analysis 41
3.3.2 Regularization Methods 42
3.3.3 Selection of Regularization Parameter 47
3.3.4 Application of Regularization Method to Model Parameter Identification 50
3.4 Computational Inverse Algorithms 53
3.4.1 Gradicnt Itcration-Bascd Computational Inverse Algorithm 55
3.4.2 Intelligent Evolutionary-Based Computational Inverse Algorithm 59
3.4.3 Hybrid Inverse Algorithm 61
3.5 Conclusions 63
Rcfcrenccs 64
4 Computational Inverse for Modleling Parameters 67
4.1 Introduction 67
4.2 Identification of Model Characteristic Parameters 68
4.2.1 Material Parameter ldentification for Stamping Plate 68
4.2.2 Dynamic Constitutive Parameter Identification for Concretc Matcrial 72
4.3 Identification of Model Environment Parameters 79
4.3.1 Dynamic Load Identification for Cylinder Structure 79
4.3.2 vehicle Crash Condition Identification 82
4.4 Conclusions 85
References 86
5 Introduction to Rapid Structural Analysis 89
5.1 Engineering Background and Significance 89
5.2 surrogate Model Methods 90
5.3 Model Order Reduction Methods 93
References 94
6 Rapid Structural Analysis Based on Surrogate Models 97
6.1 Introduction 97
6.2 Polynomial Response Surface Based on Structural selection Technique 98
6.2.1 Polynomial Structure Selection Based on Error Reduction Ratio 98
6.2.2 Numerical Example 100
6.2.3 Engineering Application: Nonlincar Output Force Modeling for Hydro-Pneumatic Suspension 101
6.3 Surrogate Model Based on Adaptive Radial Basis Function 105
6.3.1 Selection of Sample and Testing Points 106
6.3.2 Optimization of the Shape Parameters 108
6.3.3 RBF Model Updating Procedure 108
6.3.4 Numerical Examples 110
6.3.5 Engineering Application: Surrogate Model Construction for Crash Worthiness of Thin-Walled Beam Structure 112
6.4 High Dimensional Model Representation 115
6.4.1 Improved HDMR 116
6.4.2 Analysis of Calculation Efficiency 119
6.4.3 Numerical Example 120
6.5 Conclusions 122
References 123
7 Rapid Structural Analysis Based on Reduced Basis Method 125
7.1 Introduction 125
7.2 The RBM for Rapid Analysis of Structural Static Responses 126
7.2.1 The Flow of Rapid Calculation Based on RBM 126
7.2.2 Construction of the Reduced Basis Space 129
7.2.3 Engineering Application: Rapid Analysis of Cab Structure 130
7.3 The RBM for Rapid Analysis of Structural Dynamic Responses 132
7.3.1 Parameterized Description of Structural Dynamics 132
7.3.2 Construction of the Reduced Basis Space Based on Time Domain Integration 133
7.3.3 Projection Reduction Based on Least Squares 135
7.3.4 Numerical Example 136
7.4 Conclusions 138
References 140
8 Introduction to Multi-objective Optimization Design 141
8.1 Characteristics of Multi-objective Optimization 141
8.2 Optimal Solution Set in Multi-objective Optimization 143
8.3 Multi-objective Optimization Methods 144
8.3.1 Preference-Based Methods 144
8.3.2 Generating Methods Based on Evolutionary Algorithms 146
References 150
9 Micro Multi-objective Genetic Algorithm 153
9.1 Introduction 153
9.2 Procedure of uMOGA 154
9.3 Implementation Techniques of uMOGA 156
9.3.1 Non-dominated Sorting 156
9.3.2 Population Diversity Preservation Strategies 158
9.3.3 Elite Individual Preserving Mechanism 159
9.4 Algorithm Performance Evaluation 160
9.4.1 Numerical Examples 160
9.4.2 Engineering Testing Example 167
9.5 Engineering Applications 169
9.5.1 Optimization Design of Guide Mechanism of Vehicle Suspension 169
9.5.2 Optimization Design of Variable Blank Holder Force in Sheet Metal Forming 174
9.6 Conclusions 177
References 177
10 Multi-objective Optimization Design Based on Surrogate Models 179
10.1 Introduction 179
10.2 Multi-objective Optimization Algorithm Based on Intellige
展开全部
商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服