扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
气候文明史
-
>
南极100天
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
声音简史
数理统计(英文版)(Mathematical Statistics) 版权信息
- ISBN:9787030670007
- 条形码:9787030670007 ; 978-7-03-067000-7
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
数理统计(英文版)(Mathematical Statistics) 内容简介
本书是基于作者在香港大学和南方科技大学10余年数理统计教学的经验,同时结合国内其他高校学生和教师的具体情况精心撰写而成的。本书主要内容包括:概率和分布、抽样分布、点估计、区间估计、假设检验、斜零分布的临界区域和值等。本书通过组合传统教材和课堂PPT各自的优点,设置了经纬两条主线,运用块状结构呈现知识点,使得每个知识点自我包含,并采用彩色印刷,方便教与学。另外在介绍重要概念时,注重启发,逻辑顺畅,条理清楚。
数理统计(英文版)(Mathematical Statistics) 目录
Contents
Preface
Chapter1 Probabilityand Distributions 1
1.1 Probability 1
1.1.1 Permutation, combination and binomial coefficients 1
1.1.2 Sample space 3
1.1.3 Events 4
1.1.4 Propertiesof probability 5
1.2 Conditional Probability 7
1.3 Bayes Theorem 9
1.4 ProbabilityDistributions 10
1.5 Bivariate Distributions 13
1.5.1 Joint distribution 13
1.5.2 Marginal and conditional distributions 14
1.5.3 Independencyoftwo randomvariables 14
1.6 Expectation,Variance and Moments 16
1.6.1 Moments 16
1.6.2 Some probabilityinequalities 18
1.6.3 Conditional expectation 21
1.6.4 Compound randomvariables 23
1.6.5 Calculation of (conditional) probabilityvia (conditional) expectation 23
1.7 Moment GeneratingFunction 24
1.8 Beta and Gamma Distributions 27
1.8.1 Beta distribution 27
1.8.2 Gamma distribution 29
1.9 Bivariate Normal Distribution 32
1.9.1 Univariate normal distribution 32
1.9.2 Correlation coefficient 34
1.9.3 Joint density 34
1.9.4 Stochastic representation of random variables or random vectors 38
Contents 1.10 Inverse Bayes Formulae 40
1.10.1 Three inverse Bayes formulae 40
1.10.2 Understanding the IBF 43
1.10.3 Two examples 45
1.11 Categorical Distribution 47
1.12 Zero-inflatedPoisson Distribution 49
Exercise 1 53
Chapter2 Sampling Distributions 57
2.1 Distribution of the Function of RandomVariables 57
2.1.1 Cumulative distribution function technique 57
2.1.2 Transformation technique 62
2.1.3 Momentgenerating function technique 71
2.2 Statistics, Sample Mean and SampleVariance 73
2.2.1 Distributionofthe sample mean 73
2.2.2 Distributionofthe samplevariance 74
2.3 The and Distributions 76
2.3.1 The distribution 76
2.3.2 The distribution 78
2.4 Order Statistics 81
2.4.1 Distributionofa single order statistic 81
2.4.2 Joint distributionof more order statistics 84
2.5 Limit Theorems 86
2.5.1 Convergencyofa sequenceof distribution functions 86
2.5.2 Convergencein probability 91
2.5.3 Relationshipof four classesof convergency 92
2.5.4 Lawof largenumber 94
2.5.5 Central limit theorem 94
2.6 Some Challenging Questions 96
Exercise 2 99
Chapter3 Point Estimation 102
3.1 Maximum LikelihoodEstimator 102
3.1.1 Pointestimator andpointestimate 102
3.1.2 Joint densityand likelihoodfunction 104
3.1.3 Maximum likelihoodestimate and maximum likelihood estimator 105
3.1.4 Theinvariance propertyof MLE 115
Contents vii 3.2 Moment Estimator 117
3.3 Bayesian Estimator 121
3.4 Propertiesof Estimators 125
3.4.1 Unbiasedness 125
3.4.2 Efficiency 126
3.4.3 Sufficiency 138
3.4.4 Completeness 146
3.5 Limiting Properties of MLE 151
3.6 Some Challenging Questions 153
Exercise 3 156
Chapter4 Confidence Interval Estimation 162
4.1 Introduction 162
4.2 The ConfidenceIntervalof Normal Mean 166
4.2.1 Thevarianceisknown 166
4.2.2 Thevarianceis unknown 167
4.3 The Confidence Interval of the Difference of Two Normal Means 169
4.4 The ConfidenceInterval of Normal Variance 171
4.4.1 The mean is known 171
4.4.2 The meanis unknown 172
4.5 The Confidence Interval of the Ratio of Two Normal Variances 172
4.6 Large-Sample ConfidenceIntervals 174
4.7 The Shortest ConfidenceInterval 178
Exercise 4 180
Chapter5 Hypothesis Testing 183
5.1 Introduction 183
5.1.1 Several basic notions 184
5.1.2 TypeIerror andTypeII error 186
5.1.3 Power function 189
5.2 The Neyman–Pearson Lemma 191
5.2.1 Simplenullhypothesisversus simple alternative 192
5.2.2 Compositehypotheses 199
5.3 LikelihoodRatioTest 203
5.3.1 Likelihoodratio statistic 203
5.3.2 Likelihoodratio test 205
5.4 Testson Normal Means 211
5.4.1 One–sample normal test whenvarianceisknown 211
5.4.2 One–sample test 215
5.4.3 Two–samplet test 217
5.5 GoodnessofFitTest 220
5.5.1 Introduction 220
5.5.2 Thechi-square testfor totallyknown distribution 222
5.5.3 The chi-square test for known distribution family with unknown parameters 226
Exercise 5 230
Chapter6 Critical Regions and p-values for Skew Null Distributions 233
6.1 One–sample Chi-square Test on Normal Variance 233
6.2 Two–sampleF Test on Normal Variances 238
Appendix A Basic Statistical Distributions 246
A.Discrete Distributions 246
A.Continuous Distributions 250
Appendix B AUnified Expectation Technique 256
B.Continuous RandomVariables 257
B.Discrete RandomVariables 277
Appendix C The Newton–Raphson and Fisher Scoring Algorithms 289
C.Newton’s Method fo rRoot Finding 289
C.Newton’s Method for CalculatingMLE 294
C.The Newton–Raphson Algorithm for High-dimensional Cases 299
C.The Fisher Scoring Algorithm 304
List of Figures 307
List ofTables 309
List ofAcronyms 310
List of Symbols 311
References 315
Subject Index 317
Preface
Chapter1 Probabilityand Distributions 1
1.1 Probability 1
1.1.1 Permutation, combination and binomial coefficients 1
1.1.2 Sample space 3
1.1.3 Events 4
1.1.4 Propertiesof probability 5
1.2 Conditional Probability 7
1.3 Bayes Theorem 9
1.4 ProbabilityDistributions 10
1.5 Bivariate Distributions 13
1.5.1 Joint distribution 13
1.5.2 Marginal and conditional distributions 14
1.5.3 Independencyoftwo randomvariables 14
1.6 Expectation,Variance and Moments 16
1.6.1 Moments 16
1.6.2 Some probabilityinequalities 18
1.6.3 Conditional expectation 21
1.6.4 Compound randomvariables 23
1.6.5 Calculation of (conditional) probabilityvia (conditional) expectation 23
1.7 Moment GeneratingFunction 24
1.8 Beta and Gamma Distributions 27
1.8.1 Beta distribution 27
1.8.2 Gamma distribution 29
1.9 Bivariate Normal Distribution 32
1.9.1 Univariate normal distribution 32
1.9.2 Correlation coefficient 34
1.9.3 Joint density 34
1.9.4 Stochastic representation of random variables or random vectors 38
Contents 1.10 Inverse Bayes Formulae 40
1.10.1 Three inverse Bayes formulae 40
1.10.2 Understanding the IBF 43
1.10.3 Two examples 45
1.11 Categorical Distribution 47
1.12 Zero-inflatedPoisson Distribution 49
Exercise 1 53
Chapter2 Sampling Distributions 57
2.1 Distribution of the Function of RandomVariables 57
2.1.1 Cumulative distribution function technique 57
2.1.2 Transformation technique 62
2.1.3 Momentgenerating function technique 71
2.2 Statistics, Sample Mean and SampleVariance 73
2.2.1 Distributionofthe sample mean 73
2.2.2 Distributionofthe samplevariance 74
2.3 The and Distributions 76
2.3.1 The distribution 76
2.3.2 The distribution 78
2.4 Order Statistics 81
2.4.1 Distributionofa single order statistic 81
2.4.2 Joint distributionof more order statistics 84
2.5 Limit Theorems 86
2.5.1 Convergencyofa sequenceof distribution functions 86
2.5.2 Convergencein probability 91
2.5.3 Relationshipof four classesof convergency 92
2.5.4 Lawof largenumber 94
2.5.5 Central limit theorem 94
2.6 Some Challenging Questions 96
Exercise 2 99
Chapter3 Point Estimation 102
3.1 Maximum LikelihoodEstimator 102
3.1.1 Pointestimator andpointestimate 102
3.1.2 Joint densityand likelihoodfunction 104
3.1.3 Maximum likelihoodestimate and maximum likelihood estimator 105
3.1.4 Theinvariance propertyof MLE 115
Contents vii 3.2 Moment Estimator 117
3.3 Bayesian Estimator 121
3.4 Propertiesof Estimators 125
3.4.1 Unbiasedness 125
3.4.2 Efficiency 126
3.4.3 Sufficiency 138
3.4.4 Completeness 146
3.5 Limiting Properties of MLE 151
3.6 Some Challenging Questions 153
Exercise 3 156
Chapter4 Confidence Interval Estimation 162
4.1 Introduction 162
4.2 The ConfidenceIntervalof Normal Mean 166
4.2.1 Thevarianceisknown 166
4.2.2 Thevarianceis unknown 167
4.3 The Confidence Interval of the Difference of Two Normal Means 169
4.4 The ConfidenceInterval of Normal Variance 171
4.4.1 The mean is known 171
4.4.2 The meanis unknown 172
4.5 The Confidence Interval of the Ratio of Two Normal Variances 172
4.6 Large-Sample ConfidenceIntervals 174
4.7 The Shortest ConfidenceInterval 178
Exercise 4 180
Chapter5 Hypothesis Testing 183
5.1 Introduction 183
5.1.1 Several basic notions 184
5.1.2 TypeIerror andTypeII error 186
5.1.3 Power function 189
5.2 The Neyman–Pearson Lemma 191
5.2.1 Simplenullhypothesisversus simple alternative 192
5.2.2 Compositehypotheses 199
5.3 LikelihoodRatioTest 203
5.3.1 Likelihoodratio statistic 203
5.3.2 Likelihoodratio test 205
5.4 Testson Normal Means 211
5.4.1 One–sample normal test whenvarianceisknown 211
5.4.2 One–sample test 215
5.4.3 Two–samplet test 217
5.5 GoodnessofFitTest 220
5.5.1 Introduction 220
5.5.2 Thechi-square testfor totallyknown distribution 222
5.5.3 The chi-square test for known distribution family with unknown parameters 226
Exercise 5 230
Chapter6 Critical Regions and p-values for Skew Null Distributions 233
6.1 One–sample Chi-square Test on Normal Variance 233
6.2 Two–sampleF Test on Normal Variances 238
Appendix A Basic Statistical Distributions 246
A.Discrete Distributions 246
A.Continuous Distributions 250
Appendix B AUnified Expectation Technique 256
B.Continuous RandomVariables 257
B.Discrete RandomVariables 277
Appendix C The Newton–Raphson and Fisher Scoring Algorithms 289
C.Newton’s Method fo rRoot Finding 289
C.Newton’s Method for CalculatingMLE 294
C.The Newton–Raphson Algorithm for High-dimensional Cases 299
C.The Fisher Scoring Algorithm 304
List of Figures 307
List ofTables 309
List ofAcronyms 310
List of Symbols 311
References 315
Subject Index 317
展开全部
书友推荐
- >
莉莉和章鱼
莉莉和章鱼
¥14.4¥42.0 - >
我与地坛
我与地坛
¥16.4¥28.0 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
罗曼·罗兰读书随笔-精装
罗曼·罗兰读书随笔-精装
¥32.9¥58.0 - >
推拿
推拿
¥12.2¥32.0 - >
二体千字文
二体千字文
¥14.0¥40.0 - >
有舍有得是人生
有舍有得是人生
¥25.7¥45.0 - >
史学评论
史学评论
¥14.4¥42.0
本类畅销
-
统计学完全教程
¥107.4¥136 -
概率统计
¥7.9¥11 -
不良情绪应急处理包--孤独感
¥12.9¥30 -
不良情绪应急处理包--精神内耗
¥12.9¥30 -
孩子、家庭和外部世界
¥17.8¥56 -
北魏政治史(二)
¥26.2¥70
浏览历史
极端干旱对黏土斜墙坝的致灾机理及对策研究
¥104.3¥139.02010-国际海水热力学方程-海水热力学属性的计算与应用-56
¥33.3¥68.0哈佛百年经典:14卷:希腊戏剧 埃斯库罗斯/索福克勒斯/欧里庇得斯/阿里斯托芬
¥31.5¥45.0中国艺术小史
¥16.9¥24.8智能建筑照明技术
¥16.0¥25.0