扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
经典力学 质点细和哈密顿顿力学 第二版(影印版) 版权信息
- ISBN:9787519255329
- 条形码:9787519255329 ; 978-7-5192-5532-9
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 所属分类:>
经典力学 质点细和哈密顿顿力学 第二版(影印版) 内容简介
德国著名理论物理学家W.Griner等教授撰写的13卷集“理论物理学教科书”,是一套内容完整实用面向大学生和硕士研究生的现代物理学教材。它以系统的、统一的、连贯的方式阐述了现代理论物理学的各个方面。本套教材的特点:①取材新颖。作者十分重视新实验数据对理论物理学概念发展和深化的重要作用,不断引人大量新的材料扩充其内容。②内容叙述简明、清晰、易懂,数学推导详尽。③每卷中都输入了数以百计的例题和习题,并均给出了详细的解答。这在当前理物理学的大量出版物中是极为难得的,它能帮助和辅导学生把理论物理学的概念与方法应用于解决物理学家感兴趣的实验问题。④书中每章后附有与本章内容有关的科学家传略。内容包括5部分:移动坐标系中的牛顿力学;质点系力学;振动系统;刚体力学;拉格朗日方程;哈密顿理论;非线性动力学。
经典力学 质点细和哈密顿顿力学 第二版(影印版) 目录
Part I Newtonian Mechanics in Moving Coordinate Systems
1 Newton's Equations in a Rotating Coordinate System
1.1 Introduction of the Operator D
1.2 Formulation of Newton's Equation in the Rotating Coordinate System
1.3 Newton's Equations in Systems with Arbitrary Relative Motion
2 Free Fall on the Rotating Earth
2.1 Perturbation Calculation
2.2 Method of Successive Approximation
2.3 Exact Solution
3 Foucault's Pendulum
3.1 Solution of the Differential Equations
3.2 Discussion of the Solution
Part II Mechanics of Particle Systems
4 Degrees of Freedom
4.1 Degrees of Freedom of a Rigid Body
5 Center of Gravity
6 Mechanical Fundamental Quantities of Systems of Mass Points
6.1 Linear Momentum of the Many-Body System
6.2 Angular Momentum of the Many-Body System
6.3 Energy Law of the Many-Body System
6.4 Transformation to Center-of-Mass Coordinates
6.5 Transformation of the Kinetic Energy
Part III Vibrating Systems
7 Vibrations of Coupled Mass Points
7.1 The Vibrating Chain
8 The Vibrating String
8.1 Solution of the Wave Equation
8.2 Normal Vibrations
9 Fourier Series
10 The Vibrating Membrane
10.1 Derivation of the Differential Equation
10.2 Solution of the Differential Equation
10.3 Inclusion of the Boundary Conditions
10.4 Eigenfrequencies
10.5 Degeneracy
10.6 Nodal Lines
10.7 General Solution
10.8 Superposition of Node Line Figures
10.9 The Circular Membrane
10.10 Solution of Bessel's Differential Equation
Part IV Mechanics of Rigid Bodies
11 Rotation About a Fixed Axis
11.1 Moment of Inertia
11.2 The Physical Pendulum
12 Rotation About a Point
12.1 Tensor of Inertia
12.2 Kinetic Energy of a Rotating Rigid Body
12.3 The Principal Axes of Inertia
12.4 Existence and Orthogonality of the Principal Axes
12.5 Transformation of the Tensor of Inertia
12.6 Tensor of Inertia in the System of Principal Axes
12.7 Ellipsoid of Inertia
13 Theory of the Top
13.1 The Free Top
13.2 Geometrical Theory of the Top
13.3 Analytical Theory of the Free Top
13.4 The Heavy Symmetric Top: Elementary Considerations
13.5 Further Applications of the Top
13.6 The Euler Angles
13.7 Motion of the Heavy Symmetric Top
Part V Lagrange Equations
14 Generalized Coordinates
14.1 Quantities of Mechanics in Generalized Coordinates
15 D'Alembert Principle and Derivation of the Lagrange Equations
15.1 Virtual Displacements
16 Lagrange Equation for Nonholonomic Constraints
17 Special Problems
17.1 Velocity-Dependent Potentials
17.2 Nonconservative Forces and Dissipation Function (Friction Function:
17.3 Nonholonomic Systems and Lagrange Multipliers
Part VI Hamiltonian Theory
18 Hamilton's Equations
18.1 The Hamilton Principle
18.2 General Discussion of Variational Principles
18.3 Phase Space and Liouville's Theorem
18.4 The Principle of Stochastic Cooling
19 Canonical Transformations
20 Hamilton-Jacobi Theory
20.1 Visual Interpretation of the Action Function S
20.2 Transition to Quantum Mechanics
21 Extended Hamilton-Lagrange Formalism
21.1 Extended Set of Euler-Lagrange Equations
21.2 Extended Set of Canonical Equations
21.3 Extended Canonical Transformations
22 Extended Hamilton-Jacobi Equation
Part VII Nonlinear Dynamics
23 Dynamical Systems
23.1 Dissipative Systems: Contraction of the Phase-Space Volume . . .
23.2 Attractors
23.3 Equilibrium Solutions
23.4 Limit Cycles
24 Stability of Time-Dependent Paths
24.1 Periodic Solutions
24.2 Discretization and Poincar6 Cuts
25 Bifurcations
25.1 Static Bifurcations
25.2 Bifurcations of Time-Dependent Solutions
26 Lyapunov Exponents and Chaos
26.1 One-Dimensional Systems
26.2 Multidimensional Systems
26.3 Stretching and Folding in Phase Space
26.4 Fractal Geometry
27 Systems with Chaotic Dynamics
27.1 Dynamics of Discrete Systems
27.2 One-Dimensional Mappings
Part VIII On the History of Mechanics
28 Emergence of Occidental Physics in the Seventeenth Century Notes
Recommendations for Further Reading on Theoretical Mechanics
Index
1 Newton's Equations in a Rotating Coordinate System
1.1 Introduction of the Operator D
1.2 Formulation of Newton's Equation in the Rotating Coordinate System
1.3 Newton's Equations in Systems with Arbitrary Relative Motion
2 Free Fall on the Rotating Earth
2.1 Perturbation Calculation
2.2 Method of Successive Approximation
2.3 Exact Solution
3 Foucault's Pendulum
3.1 Solution of the Differential Equations
3.2 Discussion of the Solution
Part II Mechanics of Particle Systems
4 Degrees of Freedom
4.1 Degrees of Freedom of a Rigid Body
5 Center of Gravity
6 Mechanical Fundamental Quantities of Systems of Mass Points
6.1 Linear Momentum of the Many-Body System
6.2 Angular Momentum of the Many-Body System
6.3 Energy Law of the Many-Body System
6.4 Transformation to Center-of-Mass Coordinates
6.5 Transformation of the Kinetic Energy
Part III Vibrating Systems
7 Vibrations of Coupled Mass Points
7.1 The Vibrating Chain
8 The Vibrating String
8.1 Solution of the Wave Equation
8.2 Normal Vibrations
9 Fourier Series
10 The Vibrating Membrane
10.1 Derivation of the Differential Equation
10.2 Solution of the Differential Equation
10.3 Inclusion of the Boundary Conditions
10.4 Eigenfrequencies
10.5 Degeneracy
10.6 Nodal Lines
10.7 General Solution
10.8 Superposition of Node Line Figures
10.9 The Circular Membrane
10.10 Solution of Bessel's Differential Equation
Part IV Mechanics of Rigid Bodies
11 Rotation About a Fixed Axis
11.1 Moment of Inertia
11.2 The Physical Pendulum
12 Rotation About a Point
12.1 Tensor of Inertia
12.2 Kinetic Energy of a Rotating Rigid Body
12.3 The Principal Axes of Inertia
12.4 Existence and Orthogonality of the Principal Axes
12.5 Transformation of the Tensor of Inertia
12.6 Tensor of Inertia in the System of Principal Axes
12.7 Ellipsoid of Inertia
13 Theory of the Top
13.1 The Free Top
13.2 Geometrical Theory of the Top
13.3 Analytical Theory of the Free Top
13.4 The Heavy Symmetric Top: Elementary Considerations
13.5 Further Applications of the Top
13.6 The Euler Angles
13.7 Motion of the Heavy Symmetric Top
Part V Lagrange Equations
14 Generalized Coordinates
14.1 Quantities of Mechanics in Generalized Coordinates
15 D'Alembert Principle and Derivation of the Lagrange Equations
15.1 Virtual Displacements
16 Lagrange Equation for Nonholonomic Constraints
17 Special Problems
17.1 Velocity-Dependent Potentials
17.2 Nonconservative Forces and Dissipation Function (Friction Function:
17.3 Nonholonomic Systems and Lagrange Multipliers
Part VI Hamiltonian Theory
18 Hamilton's Equations
18.1 The Hamilton Principle
18.2 General Discussion of Variational Principles
18.3 Phase Space and Liouville's Theorem
18.4 The Principle of Stochastic Cooling
19 Canonical Transformations
20 Hamilton-Jacobi Theory
20.1 Visual Interpretation of the Action Function S
20.2 Transition to Quantum Mechanics
21 Extended Hamilton-Lagrange Formalism
21.1 Extended Set of Euler-Lagrange Equations
21.2 Extended Set of Canonical Equations
21.3 Extended Canonical Transformations
22 Extended Hamilton-Jacobi Equation
Part VII Nonlinear Dynamics
23 Dynamical Systems
23.1 Dissipative Systems: Contraction of the Phase-Space Volume . . .
23.2 Attractors
23.3 Equilibrium Solutions
23.4 Limit Cycles
24 Stability of Time-Dependent Paths
24.1 Periodic Solutions
24.2 Discretization and Poincar6 Cuts
25 Bifurcations
25.1 Static Bifurcations
25.2 Bifurcations of Time-Dependent Solutions
26 Lyapunov Exponents and Chaos
26.1 One-Dimensional Systems
26.2 Multidimensional Systems
26.3 Stretching and Folding in Phase Space
26.4 Fractal Geometry
27 Systems with Chaotic Dynamics
27.1 Dynamics of Discrete Systems
27.2 One-Dimensional Mappings
Part VIII On the History of Mechanics
28 Emergence of Occidental Physics in the Seventeenth Century Notes
Recommendations for Further Reading on Theoretical Mechanics
Index
展开全部
经典力学 质点细和哈密顿顿力学 第二版(影印版) 作者简介
本书作者W. Griner是德国理论物理学家,著有13卷集的“理论物理学教程”,这套书也让作者享誉全世界,成为全球众多高校物理学高年级本科生和研究生的教材和标准参考用书。
书友推荐
- >
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
¥6.3¥14.0 - >
中国人在乌苏里边疆区:历史与人类学概述
中国人在乌苏里边疆区:历史与人类学概述
¥34.1¥48.0 - >
唐代进士录
唐代进士录
¥25.5¥39.8 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
上帝之肋:男人的真实旅程
上帝之肋:男人的真实旅程
¥19.3¥35.0 - >
中国历史的瞬间
中国历史的瞬间
¥16.7¥38.0 - >
自卑与超越
自卑与超越
¥12.7¥39.8 - >
我与地坛
我与地坛
¥16.5¥28.0
本类畅销
-
物理学之美-插图珍藏版
¥27.6¥69 -
为了人人晓得相对论
¥6.9¥13.5 -
世纪幽灵-走近量子纠缠
¥12¥28 -
趣味物理学问答
¥19.5¥46 -
量子宇宙:一切可能发生的正在发生
¥16.1¥32.8 -
数学物理方程
¥12.9¥26